Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Med Internet Res ; 26: e54095, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801765

ABSTRACT

BACKGROUND: In recent epochs, the field of critical medicine has experienced significant advancements due to the integration of artificial intelligence (AI). Specifically, AI robots have evolved from theoretical concepts to being actively implemented in clinical trials and applications. The intensive care unit (ICU), known for its reliance on a vast amount of medical information, presents a promising avenue for the deployment of robotic AI, anticipated to bring substantial improvements to patient care. OBJECTIVE: This review aims to comprehensively summarize the current state of AI robots in the field of critical care by searching for previous studies, developments, and applications of AI robots related to ICU wards. In addition, it seeks to address the ethical challenges arising from their use, including concerns related to safety, patient privacy, responsibility delineation, and cost-benefit analysis. METHODS: Following the scoping review framework proposed by Arksey and O'Malley and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a scoping review to delineate the breadth of research in this field of AI robots in ICU and reported the findings. The literature search was carried out on May 1, 2023, across 3 databases: PubMed, Embase, and the IEEE Xplore Digital Library. Eligible publications were initially screened based on their titles and abstracts. Publications that passed the preliminary screening underwent a comprehensive review. Various research characteristics were extracted, summarized, and analyzed from the final publications. RESULTS: Of the 5908 publications screened, 77 (1.3%) underwent a full review. These studies collectively spanned 21 ICU robotics projects, encompassing their system development and testing, clinical trials, and approval processes. Upon an expert-reviewed classification framework, these were categorized into 5 main types: therapeutic assistance robots, nursing assistance robots, rehabilitation assistance robots, telepresence robots, and logistics and disinfection robots. Most of these are already widely deployed and commercialized in ICUs, although a select few remain under testing. All robotic systems and tools are engineered to deliver more personalized, convenient, and intelligent medical services to patients in the ICU, concurrently aiming to reduce the substantial workload on ICU medical staff and promote therapeutic and care procedures. This review further explored the prevailing challenges, particularly focusing on ethical and safety concerns, proposing viable solutions or methodologies, and illustrating the prospective capabilities and potential of AI-driven robotic technologies in the ICU environment. Ultimately, we foresee a pivotal role for robots in a future scenario of a fully automated continuum from admission to discharge within the ICU. CONCLUSIONS: This review highlights the potential of AI robots to transform ICU care by improving patient treatment, support, and rehabilitation processes. However, it also recognizes the ethical complexities and operational challenges that come with their implementation, offering possible solutions for future development and optimization.


Subject(s)
Artificial Intelligence , Critical Care , Robotics , Robotics/methods , Humans , Critical Care/methods , Intensive Care Units
2.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38695061

ABSTRACT

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Microwaves , Polysaccharides , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Vero Cells , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Animals , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hexuronic Acids/chemical synthesis , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , COVID-19 Drug Treatment , Structure-Activity Relationship
3.
Org Biomol Chem ; 22(12): 2365-2369, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38416050

ABSTRACT

A DMF-modulated glycosylation approach for the stereoselective synthesis of α-Kdo glycosides with readily accessible peracetylated Kdo ynenoate as a donor was described. By utilizing this approach, we completed the synthesis of various linkage types of Kdo-Kdo disaccharides and the α-Kdo-containing protected trisaccharide variant relevant to the lipopolysaccharide of Coxiella burnetii strain Nine Mile.


Subject(s)
Glycosides , Lipopolysaccharides , Glycosylation , Disaccharides , Trisaccharides
4.
Front Genet ; 14: 1115308, 2023.
Article in English | MEDLINE | ID: mdl-37091782

ABSTRACT

Background: Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. The global influence of hypoxia-related genes (HRGs) on prognostic significance, tumor microenvironment characteristics, and therapeutic response is unclear in patients with non-small cell lung cancer (NSCLC). Method: RNA-seq and clinical data for NSCLC patients were derived from The Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from the MSigDB. The differentially expressed HRGs were determined using the limma package; prognostic HRGs were identified via univariate Cox regression. Using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression, an optimized prognostic model consisting of nine HRGs was constructed. The prognostic model's capacity was evaluated by Kaplan‒Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis in the TCGA (training set) and GEO (validation set) cohorts. Moreover, a potential biological pathway and immune infiltration differences were explained. Results: A prognostic model containing nine HRGs (STC2, ALDOA, MIF, LDHA, EXT1, PGM2, ENO3, INHA, and RORA) was developed. NSCLC patients were separated into two risk categories according to the risk score generated by the hypoxia model. The model-based risk score had better predictive power than the clinicopathological method. Patients in the high-risk category had poor recurrence-free survival in the TCGA (HR: 1.426; 95% CI: 0.997-2.042; p = 0.046) and GEO (HR: 2.4; 95% CI: 1.7-3.2; p < 0.0001) cohorts. The overall survival of the high-risk category was also inferior to that of the low-risk category in the TCGA (HR: 1.8; 95% CI: 1.5-2.2; p < 0.0001) and GEO (HR: 1.8; 95% CI: 1.4-2.3; p < 0.0001) cohorts. Additionally, we discovered a notable distinction in the enrichment of immune-related pathways, immune cell abundance, and immune checkpoint gene expression between the two subcategories. Conclusion: The proposed 9-HRG signature is a promising indicator for predicting NSCLC patient prognosis and may be potentially applicable in checkpoint therapy efficiency prediction.

5.
Chem Commun (Camb) ; 56(86): 13157-13160, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33016286

ABSTRACT

A novel method involving the laser-triggered Ag-nanoparticle-based plasmonic optical trapping of targets is developed. This dynamically optimized Raman enhanced protocol exhibits superior detection sensitivity for Serratia marcescens and tetrabromobisphenol A, with LOD values of 5 × 105 CFU mL-1 and 6 × 10-7 M, respectively.

6.
J Cell Biochem ; 118(9): 2581-2586, 2017 09.
Article in English | MEDLINE | ID: mdl-28106294

ABSTRACT

The biological consequences of cellular senescence and immortalization in aging and cancer are in conflict. Organisms have developed common cellular signaling pathways and surveillance mechanisms to control the processing of aging against tumorigenesis. The imbalance of any signals involved in this process may result in either premature aging or tumorigenesis and reduce the life span of the organism. In contrast, the balance between aging and tumorigenesis at a higher level (homeostatic-balance) may benefit the organism with tumor-free longevity. The focus of this perspective is to review the literature on the balance between "Yin" and "Yang" in traditional Chinese medicine. Modern cellular and molecular techniques now permit a more robust system to screen herbs in traditional Chinese medicine for their activity in balancing aging and tumorigenesis. The understanding of the crosstalk between aging and tumorigenesis and new perspectives on the application of Chinese medicine might shed light on anti-aging and tumor-free strategies. J. Cell. Biochem. 118: 2581-2586, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Aging , Medicine, Chinese Traditional , Molecular Biology , Neoplasms , Plants, Medicinal , Aging/genetics , Aging/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy
7.
Yi Chuan ; 33(6): 539-48, 2011 Jun.
Article in Chinese | MEDLINE | ID: mdl-21684858

ABSTRACT

Protein p53 is the most intensively studied tumor suppressor protein. Recent studies keep revealing its new function in metabolism and reproduction. At the same time, it is also found that varieties of p53 mutant gained new function in promoting tumorigenesis. These studies provide the basis for understanding the personalized gain of function of p53 mu-tants and help us searching for the new strategies for reactivation of wild-type p53 and correction of the function of p53 mutants. The personalized treatment targeting different p53 mutants will be the focus for cancer treatment. Here, we re-viewed the discovered gain of function of some p53 mutants and the molecular strategies for reactivating wild type p53 function: by use of small molecules or polypeptides to reactivate the wild type function of p53 mutants in tumor cells; by exogenous expression of wild type p53 carried by recombinant adenovirus in tumor cells; and by inhibition the interaction between p53 and mdm2 to stabilize wild type p53 proteins. Further study of variety of p53 point mutations farcilitates de-signing more effectively personalized strategies in the cancer therapy.


Subject(s)
Mutation , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine/methods , Tumor Suppressor Protein p53/genetics , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...