Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Taiwan J Obstet Gynecol ; 62(1): 175-178, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36720536

ABSTRACT

OBJECTIVE: In order to figure out the cause for two consecutive fetuses with nonimmune hydrops fetalis (NIHF) in a Taiwanese couple, whole-Exome Sequencing and Sanger Sequencing were applied for the family. CASE REPORT: The two fetuses developed NIHF at gestation age of 19 and 21 weeks, respectively. The clinical features included ascites and pleural effusion, flattened nasofrontal angle, skin edema, clenched hands, ambiguous genitalia, hepatosplenomegaly and fetal thrombocytopenia. Magnetic resonance imaging of the brain showed cerebellar hypoplasia and delayed cortical maturation. The GBA deleterious variants c.1505+5G > C and c.308-1G > A were both detected in the two fetuses. CONCLUSION: The report provided the precious experience of the clinical presentation of perinatal lethal Gaucher disease (PLGD) and advice on reproductive medicine for the next pregnancy in a couple. The novel genetic mutations identified in the study also contribute to the known spectrum of PLGD-related mutations.


Subject(s)
Gaucher Disease , Pregnancy , Female , Humans , Infant , Gaucher Disease/complications , Gaucher Disease/genetics , Mutation , Hydrops Fetalis/genetics , Maternal Age
2.
Aging (Albany NY) ; 13(15): 19339-19351, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34314377

ABSTRACT

Familial hypercholesterolemia (FH) is a common genetic disorder characterized by a lifelong elevated low-density lipoprotein cholesterol (LDL-C) level. The relationship between FH and ischemic stroke is still controversial. We enrolled ischemic stroke patients prospectively in our neurological ward, and divided them into two groups according to LDL-C levels with a threshold of 130 mg/dl. Targeted sequencing was performed in all stroke patients for LDLR, APOB, and PCSK9 genes. The fifty-eight high-LDL subjects were older, prevalence of previous myocardial infarction/stroke history was lower, and the first stroke age was older compared with values in the sixty-three low-LDL cases. The prevalence of FH in Han-Chinese stroke patients was 5.0%, and was 10.3% in those with a higher LDL-C level. We identified six carriers, who had higher percentages of large vessel stroke subtype (66.7% vs. 15.4%) and transient ischemic attack (33.3% vs. 3.8%), previous myocardial infarction/stroke history (50.0% vs. 11.5%), statin use (50.0% vs. 11.5%), and increased carotid intima-media thickness (IMT) (0.9-1.2mm vs.0.7-9.0mm) compared with the other hypercholesterolemic patients without pathogenic variants. Ischemic stroke patients carrying FH pathogenic variants seemed to have a higher risk for large artery stroke and transient ischemic attack. The IMT exam could be useful to screen for FH in hypercholesterolemic stroke patients.


Subject(s)
Cholesterol, LDL/blood , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/genetics , Ischemic Stroke/complications , Aged , Apolipoprotein B-100/genetics , Carotid Intima-Media Thickness , Female , Heterozygote , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Male , Middle Aged , Mutation , Phenotype , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Risk Factors , Taiwan/epidemiology
3.
Front Pharmacol ; 12: 649267, 2021.
Article in English | MEDLINE | ID: mdl-33897436

ABSTRACT

Background: Identifying patients with de novo acute myeloid leukemia (AML) who will probably respond to the "7 + 3" induction regimen remains an unsolved clinical challenge. This study aimed to identify whether c-Myc could facilitate cytogenetics to predict a "7 + 3" induction chemoresponse in de novo AML. Methods: We stratified 75 untreated patients (24 and 51 from prospective and retrospective cohorts, respectively) with de novo AML who completed "7 + 3" induction into groups with and without complete remission (CR). We then compared Myc-associated molecular signatures between the groups in the prospective cohort after gene set enrichment analysis. The expression of c-Myc protein was assessed by immunohistochemical staining. We defined high c-Myc-immunopositivity as > 40% of bone marrow myeloblasts being c-Myc (+). Results: Significantly more Myc gene expression was found in patients who did not achieve CR by "7 + 3" induction than those who did (2439.92 ± 1868.94 vs. 951.60 ± 780.68; p = 0.047). Expression of the Myc gene and c-Myc protein were positively correlated (r = 0.495; p = 0.014). Although the non-CR group did not express more c-Myc protein than the CR group (37.81 ± 25.13% vs. 29.04 ± 19.75%; p = 0.151), c-Myc-immunopositivity could be a surrogate to predict the "7 + 3" induction chemoresponse (specificity: 81.63%). More importantly, c-Myc-immunopositivity facilitated cytogenetics to predict a "7 + 3" induction chemoresponse by increasing specificity from 91.30 to 95.92%. Conclusion: The "7 + 3" induction remains the standard of care for de novo AML patients, especially for those without a high c-Myc-immunopositivity and high-risk cytogenetics. However, different regimens might be considered for patients with high c-Myc-immunopositivity or high-risk cytogenetics.

4.
Adv Biosyst ; 4(6): e2000013, 2020 06.
Article in English | MEDLINE | ID: mdl-32529799

ABSTRACT

Ex vivo culture of viable circulating tumor cells (CTCs) from individual patients has recently become an emerging liquid biopsy technology to investigate drug sensitivity and genomic analysis in cancer. However, it remains challenging to retrieve the CTCs with high viability and purity from cancer patients' blood using a rapid process. Here, a triple selection strategy that combines immunonegative enrichment, density gradient, and microfluidic-based size-exclusion methods is developed for in situ drug sensitivity testing. The CTC isolation chip consists of 4 independent microchannels that can evenly distribute the captured CTCs, allowing for independent in situ analysis event. The cancer cells are retrieved within 5 min with high viability (>95%), captured efficiency (78%), and high purity (99%) from 7.5 mL of blood cell mixed samples. Furthermore, the CTCs can be isolated from prostate cancer patients' blood samples and verified in situ using cancer-specific markers within 1.5 h, demonstrating the possibility to be applied to clinical practice. In situ drug sensitivity analysis demonstrates that the captured CTCs without and with cisplatin treatment for 1 day have survival rates of 87.5% and 0%, respectively. It is envisioned that this strategy may become a potential tool to identify suitable therapies prior to the treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Separation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating/metabolism , Precision Medicine , A549 Cells , Drug Screening Assays, Antitumor , Humans , Neoplastic Cells, Circulating/pathology
5.
Cell Transplant ; 26(3): 417-427, 2017 03 13.
Article in English | MEDLINE | ID: mdl-27737727

ABSTRACT

Articular cartilage has a very limited capacity for self-repair, and mesenchymal stem cells (MSCs) have the potential to treat cartilage defects and osteoarthritis. However, in-depth mechanistic studies regarding their applications are required. Here we demonstrated the use of chitosan film culture for promoting chondrogenic differentiation of MSCs. We found that MSCs formed spheres 2 days after seeding on dishes coated with chitosan. When MSCs were induced in a chondrogenic induction medium on chitosan films, the size of the spheres continuously increased for up to 21 days. Alcian blue staining and immunohistochemistry demonstrated the expression of chondrogenic proteins, including aggrecan, type II collagen, and type X collagen at 14 and 21 days of differentiation. Importantly, chitosan, with a medium molecular weight (size: 190-310 kDa), was more suitable than other sizes for inducing chondrogenic differentiation of MSCs in terms of sphere size and expression of chondrogenic proteins and endochondral markers. We identified that the mechanistic target of rapamycin (mTOR) signaling and its downstream S6 kinase (S6K)/S6 were activated in chitosan film culture compared to that of monolayer culture. The activation of mTOR/S6K was continuously upregulated from days 2 to 7 of differentiation. Furthermore, we found that mTOR/S6K signaling was required for chondrogenic differentiation of MSCs in chitosan film culture through rapamycin treatment and mTOR knockdown. In conclusion, we showed the suitability of chitosan film culture for promoting chondrogenic differentiation of MSCs and its potential in the development of new strategies in cartilage tissue engineering.


Subject(s)
Chitosan/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Aggrecans/metabolism , Blotting, Western , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Chitosan/chemistry , Chondrogenesis/drug effects , Collagen Type II/metabolism , Collagen Type X/metabolism , Humans , Immunohistochemistry , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...