Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(11): e11661, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36468089

ABSTRACT

Turning is a typical machining process, which is widely used in the manufacturing process of parts. The residual stress introduced by turning has a significant influence on the mechanical properties, fatigue performance, and service safety, and is one of the key factors affecting the fatigue life of parts. Conventional residual stress prediction models based on cutting parameters cannot consider all the influencing factors of turning and are strongly dependent on the specific cutting environment and tool, so they have limitations. Therefore, a residual stress analysis and prediction method based on cutting temperature and cutting force is proposed in this paper for the rough turning process of Ti-6Al-4V. Firstly, the sensitivity analysis of turning residual stress is carried out on eight cutting variables to determine the key cutting variables affecting the residual stress. Subsequently, the influence of the above key variables on residual stress is analyzed from the perspective of cutting temperature and cutting force. Finally, the residual stress prediction model based on cutting temperature and cutting force is established. The results show that the three variables that have the greatest influence on residual stresses are friction coefficient, tool edge radius, and cutting speed. The friction coefficient and tool edge radius affect the thickness of the residual stress layer. The cutting speed has little effect on the thickness of the residual stress layer, but increasing the cutting speed will lead to the transformation of residual stress to tensile stress. The relative error between the predicted value and the simulated value of residual stress is less than 6%, indicating that the prediction model has high accuracy and can effectively predict the residual stress. The prediction method proposed in this paper is not limited by the specific turning condition and provides a new perspective for the analysis and prediction of turning residual stress.

2.
Front Cell Infect Microbiol ; 11: 663884, 2021.
Article in English | MEDLINE | ID: mdl-34277466

ABSTRACT

Background: The pandemic of Coronavirus Disease 2019 (COVID-19) brings new challenges for pediatricians, especially in the differentiation with non-COVID-19 pneumonia in the peak season of pneumonia. We aimed to compare the clinical characteristics of pediatric patients with COVID-19 and other respiratory pathogens infected pneumonias. Methods: We conducted a multi-center, cross-sectional study of pediatric inpatients in China. Based on pathogenic test results, pediatric patients were divided into three groups, including COVID-19 pneumonia group, Non-COVID-19 viral (NCV) pneumonia group and Non-viral (NV) pneumonia group. Their clinical characteristics were compared by Kruskal-Wallis H test or chi-square test. Results: A total of 636 pediatric pneumonia inpatients, among which 87 in COVID-19 group, 194 in NCV group, and 355 in NV group, were included in analysis. Compared with NCV and NV patients, COVID-19 patients were older (median age 6.33, IQR 2.00-12.00 years), and relatively fewer COVID-19 patients presented fever (63.2%), cough (60.9%), shortness of breath (1.1%), and abnormal pulmonary auscultation (18.4%). The results were verified by the comparison of COVID-19, respiratory syncytial virus (RSV) and influenza A (IFA) pneumonia patients. Approximately 42.5%, 44.8%, and 12.6% of the COVID-19 patients presented simply ground-glass opacity (GGO), simply consolidation, and the both changes on computed tomography (CT) scans, respectively; the proportions were similar as those in NCV and NV group (p>0.05). Only 47.1% of COVID-19 patients had both lungs pneumonia, which was significantly lower than that proportion of nearly 80% in the other two groups. COVID-19 patients presented lower proportions of increased white blood cell count (16.5%) and abnormal procalcitonin (PCT) (10.7%), and a higher proportion of decreased lymphocyte count (44.0%) compared with the other two groups. Conclusion: Majority clinical characteristics of pediatric COVID-19 pneumonia patients were milder than non-COVID-19 patients. However, lymphocytopenia remained a prominent feature of COVID-19 pediatric pneumonia.


Subject(s)
COVID-19 , Pneumonia , Child , China/epidemiology , Cross-Sectional Studies , Humans , Lung/diagnostic imaging , Pneumonia/epidemiology , Retrospective Studies , SARS-CoV-2
3.
Int J Biol Macromol ; 165(Pt A): 1258-1263, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33038397

ABSTRACT

A SiOx coating prepared via plasma-enhanced chemical vapor deposition (PECVD) technique was used as a transition layer between polylactic acid (PLA) and chitosan (CS) to form a three-layer composite film of PLA/SiOx/CS. The effect of oxygen plasma irradiation time (0 s, 30s and 60s) on SiOx surface and PLA-CS interface was examined based on the contact angle, pull-off test and scanning electron microscope (SEM). The mechanical, barrier and antibacterial properties of PLA/SiOx/CS films were also investigated. The results showed that oxygen plasma irradiation improved the hydrophilicity of the SiOx surface and the adhesive strength between SiOx-CS of PLA/SiOx/CS films in a time-dependent manner. SEM examination revealed a gap between PLA/CS layers, but the interfacial separation among layers in PLA/SiOx/CS films disappeared as the transition layer of SiOx and oxygen plasma irradiation (60s) intensified. Notably, the oxygen barrier property and antibacterial activity of PLA/SiOx/CS films were dramatically enhanced. Additionally, moisture resistance was slightly decreased following the incorporation of the CS coating compared with the PLA film. The tensile strength of the composite film also increased with the number of layers, while elongation at break decreased. The prepared PLA/SiOx/CS films with multifunction are promising applied in food packaging as biobased materials.


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Food Packaging , Polyesters/chemistry , Anti-Bacterial Agents/chemical synthesis , Lactic Acid/chemistry , Oxides/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Tensile Strength/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...