Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38979240

ABSTRACT

Cytokine IL-1ß is an early component of inflammatory cascades, with both priming and activation steps required before IL-1ß release. Here, the P2X7 receptor (P2X7R) for ATP was shown to both prime and release IL-1ß from retinal microglial cells. Isolated retinal microglial cells increased expression of Il1b when stimulated with endogenous receptor agonist extracellular ATP; ATP also rapidly downregulated expression of microglial markers Tmem119 and Cd206. Changes to all three genes were reduced by specific P2X7R antagonist A839977, implicating the P2X7R. Microglial cells expressed the P2X7R on ramifications and responded to receptor agonist BzATP with robust and rapid rises in intracellular Ca 2+ . BzATP increased expression of IL-1ß protein colocalizing with CX3CR1-GFP in retinal wholemounts consistent with microglial cells. ATP also triggered release of IL-1ß from isolated retinal microglia into the bath; release was inhibited by A839977 and induced by BzATP, supporting a role for the P2X7R in release as well as priming. The IL-1ß release triggered by ATP was substantially greater from microglial cells compared to astrocytes from the optic nerve head region. Il1b expression was increased by a transient rise in intraocular pressure and Il1b levels remained elevated 10 days after a single IOP elevation. In summary, this study suggests the P2X7 receptor can both prime IL-1ß levels in microglial cells and trigger its release. The P2Y12R was previously identified as a chemoattractant for retinal microglia, suggesting the recruitment of the cells towards the source of released extracellular ATP could position microglia for P2X7R receptor, enabling both priming and release of IL-1ß.

2.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979248

ABSTRACT

This study characterizes a fluorescent Slc17a6 -tdTomato neuronal reporter mouse line offering strong labeling in axons throughout the optic nerve, dendrites and soma in 99% of retinal ganglion cells (RGCs). The model facilitates neuronal assessment ex vivo with wholemounts quantified to show neurodegeneration following optic nerve crush or elevated IOP as related to glaucoma, in vitro with robust Ca 2+ responses to P2X7 receptor stimulation in neuronal cultures, and in vivo using a confocal scanning laser ophthalmoscope (cSLO). While the tdTomato signal showed strong overlap with RGC markers, BRN3A and RBPMS, there was no cross-labeling of displaced amacrine cells in the ganglion cell layer. Controls indicated no impact of Slc17a6 -tdTomato expression on light-dependent neuronal function, as determined with a microelectrode array (MEA), or on structure, as measured with optical coherence tomography (OCT). In summary, this novel neuronal reporter mouse model offers an effective means to increase the efficiency for real-time, specific visualization of retinal ganglion cells. It holds substantial promise for enhancing our understanding of RGC pathology in glaucoma and other diseases of the optic nerve, and could facilitate the screening of targeted therapeutic interventions for neurodegeneration.

3.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979351

ABSTRACT

Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights: Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury.

4.
J Pain ; 25(4): 1039-1058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37956743

ABSTRACT

An enhanced understanding of neurotransmitter systems contributing to pain transmission aids in drug development, while the identification of biological variables like age and sex helps in the development of personalized pain management and effective clinical trial design. This study identified enhanced expression of purinergic signaling components specifically in painful inflammation, with levels increased more in women as compared to men. Inflammatory dental pain is common and potentially debilitating; as inflammation of the dental pulp can occur with or without pain, it provides a powerful model to examine distinct pain pathways in humans. In control tissues, P2X3 and P2X2 receptors colocalized with PGP9.5-positive nerves. Expression of the ecto-nucleotidase NTPDase1 (CD39) increased with exposure to extracellular adenosine triphosphate (ATP), implying CD39 acted as a marker for sustained elevation of extracellular ATP. Both immunohistochemistry and immunoblots showed P2X2, P2X3, and CD39 increased in symptomatic pulpitis, suggesting receptors and the ATP agonist were elevated in patients with increased pain. The increased expression of P2X3 and CD39 was more frequently observed in women than men. In summary, this study identifies CD39 as a marker for chronic elevation of extracellular ATP in fixed human tissue. It supports a role for increased purinergic signaling in humans with inflammatory dental pain and suggests the contribution of purines shows sexual dimorphism. This highlights the potential for P2X antagonists to treat pain in humans and stresses the need to consider sex in clinical trials that target pain and purinergic pathways. PERSPECTIVE: This article demonstrates an elevation of ATP-marker CD39 and of ATP receptors P2X2 and P2X3 with inflammatory pain and suggests the rise is greater in women. This highlights the potential for P2X antagonists to treat pain and stresses the consideration of sexual dimorphism in studies of purines and pain.


Subject(s)
Dental Pulp , Pain , Male , Humans , Female , Dental Pulp/metabolism , Inflammation/metabolism , Adenosine Triphosphate/metabolism , Purines
5.
J Neuroinflammation ; 18(1): 217, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34544431

ABSTRACT

BACKGROUND: The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). METHODS: In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. RESULTS: Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7-/- mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7-/- mice, and neuronal loss showed some association with microglial activation. CONCLUSIONS: P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.


Subject(s)
Glaucoma/metabolism , Glaucoma/pathology , Microglia/metabolism , Microglia/pathology , Receptors, Purinergic P2X7/metabolism , Animals , Mice , Mice, Inbred C57BL , Up-Regulation
6.
Ocul Surf ; 19: 313-321, 2021 01.
Article in English | MEDLINE | ID: mdl-33161128

ABSTRACT

PURPOSE: Acyclovir is most commonly used for treating ocular Herpes Keratitis, a leading cause of infectious blindness. However, emerging resistance to Acyclovir resulting from mutations in the thymidine kinase gene of Herpes Simplex Virus -1 (HSV-1), has prompted the need for new therapeutics directed against a different viral protein. One novel target is the HSV-1 Processivity Factor which is essential for tethering HSV-1 Polymerase to the viral genome to enable long-chain DNA synthesis. METHODS: A series of peptides, based on the crystal structure of the C-terminus of HSV-1 Polymerase, were constructed with hydrocarbon staples to retain their alpha-helical conformation. The stapled peptides were tested for blocking both HSV-1 DNA synthesis and infection. The most effective peptide was further optimized by replacing its negative N-terminus with two hydrophobic valine residues. This di-valine stapled peptide was tested for inhibiting HSV-1 infection of human primary corneal epithelial cells. RESULTS: The stapled peptides blocked HSV-1 DNA synthesis and HSV-1 infection. The unstapled control peptide had no inhibitory effects. Specificity of the stapled peptides was confirmed by their inabilities to block infection by an unrelated virus. Significantly, the optimized di-valine stapled peptide effectively blocked HSV-1 infection in human primary corneal epithelial cells with selectivity index of 11.6. CONCLUSIONS: Hydrocarbon stapled peptides that simulate the α-helix from the C-terminus of HSV-1 DNA polymerase can specifically block DNA synthesis and infection of HSV-1 in human primary corneal epithelial cells. These stapled peptides provide a foundation for developing a topical therapeutic for treating human ocular Herpes Keratitis.


Subject(s)
Herpesvirus 1, Human , Keratitis, Herpetic , DNA , Epithelial Cells , Herpesvirus 1, Human/genetics , Humans , Keratitis, Herpetic/drug therapy , Peptides/pharmacology
7.
Cells ; 9(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255431

ABSTRACT

Cytokine release from non-inflammatory cells is a key step in innate immunity, and agonists triggering cytokine release are central in coordinating responses. P2X7 receptor (P2X7R) stimulation by extracellular ATP is best known to active the NLRP3 inflammasome and release IL-1ß, but stimulation also leads to release of other cytokines. As cytokine signaling by retinal pigmented epithelial (RPE) cells is implicated in retinal neurodegeneration, the role of P2X7R in release of cytokine IL-6 from RPE cells was investigated. P2X7R stimulation triggered IL-6 release from primary mouse RPE, human iPS-RPE and human ARPE-19 cells. IL-6 release was polarized, with predominant rise across apical membranes. IL-6 release was inhibited by P2X7R antagonists A438079, A839977, and AZ10606120, but not the NRTI lamivudine (3TC), P2X1R antagonist NF279, or P2Y1R antagonist MRS2179. P2X7R-mediated IL-6 release required extracellular Ca2+ and was blocked by Ca2+ chelator BAPTA. IL-6 release and Ca2+ elevation occurred rapidly, consistent with vesicular IL-6 staining in unstimulated cells. P2X7R stimulation did not trigger IL-1ß release in these unprimed cells. P2X7R-mediated IL-6 release was enhanced in RPE cells from the ABCA4-/- mouse model of retinal degeneration. In summary, P2X7R stimulation triggers rapid Ca2+-dependent IL-6 release across the apical membrane of RPE cells.


Subject(s)
Calcium/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Receptors, Purinergic P2X7/metabolism , Retina/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Purinergic P2X Receptor Antagonists/pharmacology , Retina/drug effects
8.
Invest Ophthalmol Vis Sci ; 60(8): 3046-3053, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31319418

ABSTRACT

Purpose: Accumulation of lysosomal waste is linked to neurodegeneration in multiple diseases, and pharmacologic enhancement of lysosomal activity is hypothesized to reduce pathology. An excessive accumulation of lysosomal-associated lipofuscin waste and an elevated lysosomal pH occur in retinal pigment epithelial cells of the ABCA4-/- mouse model of Stargardt's retinal degeneration. As treatment with the P2Y12 receptor antagonist ticagrelor was previously shown to lower lysosomal pH and lipofuscin-like autofluorescence in these cells, we asked whether oral delivery of ticagrelor also prevented photoreceptor loss. Methods: Moderate light exposure was used to accelerate photoreceptor loss in albino ABCA4-/- mice as compared to BALB/c controls. Ticagrelor (0.1%-0.15%) was added to mouse chow for between 1 and 10 months. Photoreceptor function was determined with electroretinograms, while cell survival was determined using optical coherence tomography and histology. Results: Protection by ticagrelor was demonstrated functionally by using the electroretinogram, as ticagrelor-treated ABCA4-/- mice had increased a- and b-waves compared to untreated mice. Mice receiving ticagrelor treatment had a thicker outer nuclear layer, as measured with both optical coherence tomography and histologic sections. Ticagrelor decreased expression of LAMP1, implicating enhanced lysosomal function. No signs of retinal bleeding were observed after prolonged treatment with ticagrelor. Conclusions: Oral treatment with ticagrelor protected photoreceptors in the ABCA4-/- mouse, which is consistent with enhanced lysosomal function. As mouse ticagrelor exposure levels were clinically relevant, the drug may be of benefit in preventing the loss of photoreceptors in Stargardt's disease and other neurodegenerations associated with lysosomal dysfunction.


Subject(s)
Retinal Degeneration/prevention & control , Retinal Pigment Epithelium/pathology , Ticagrelor/administration & dosage , Administration, Oral , Animals , Disease Models, Animal , Electroretinography , Gene Expression Regulation/drug effects , Lysosomal Membrane Proteins/biosynthesis , Lysosomal Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Neoplasm Proteins , Purinergic P2Y Receptor Antagonists/administration & dosage , RNA/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/physiopathology , Tomography, Optical Coherence , Treatment Outcome
9.
Front Pharmacol ; 9: 242, 2018.
Article in English | MEDLINE | ID: mdl-29725296

ABSTRACT

The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE) cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt's disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

10.
Sci Rep ; 8(1): 5726, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636491

ABSTRACT

Cross-reactions between innate immunity, lysosomal function, and purinergic pathways may link signaling systems in cellular pathologies. We found activation of toll-like receptor 3 (TLR3) triggers lysosomal ATP release from both astrocytes and retinal pigmented epithelial (RPE) cells. ATP efflux was accompanied by lysosomal acid phosphatase and beta hexosaminidase release. Poly(I:C) alkalinized lysosomes, and lysosomal alkalization with bafilomycin or chloroquine triggered ATP release. Lysosomal rupture with glycyl-L-phenylalanine-2-naphthylamide (GPN) eliminated both ATP and acid phosphatase release. Secretory lysosome marker LAMP3 colocalized with VNUT, while MANT-ATP colocalized with LysoTracker. Unmodified membrane-impermeant 21-nt and "non-targeting" scrambled 21-nt siRNA triggered ATP and acid phosphatase release, while smaller 16-nt RNA was ineffective. Poly(I:C)-dependent ATP release was reduced by TBK-1 block and in TRPML1-/- cells, while TRPML activation with ML-SA1 was sufficient to release both ATP and acid phosphatase. The ability of poly(I:C) to raise cytoplasmic Ca2+ was abolished by removing extracellular ATP with apyrase, suggesting ATP release by poly(I:C) increased cellular signaling. Starvation but not rapamycin prevented lysosomal ATP release. In summary, stimulation of TLR3 triggers lysosomal alkalization and release of lysosomal ATP through activation of TRPML1; this links innate immunity to purinergic signaling via lysosomal physiology, and suggests even scrambled siRNA can influence these pathways.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Epithelial Cells/metabolism , Lysosomes/metabolism , Toll-Like Receptor 3/agonists , Transient Receptor Potential Channels/metabolism , Animals , Autophagy , Biomarkers , Calcium/metabolism , Cells, Cultured , Hydrogen-Ion Concentration , Mice , RNA, Small Interfering/genetics
11.
FASEB J ; 32(2): 782-794, 2018 02.
Article in English | MEDLINE | ID: mdl-29030399

ABSTRACT

The transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations. The TRPML agonist ML-SA1 raised cytoplasmic calcium levels in mouse RPE cells, hesRPE cells, and ARPE-19 cells; this increase was rapid, robust, reversible, and reproducible. The increase was not altered by extracellular calcium removal or by thapsigargin but was eliminated by lysosomal rupture with glycyl-l-phenylalanine-ß-naphthylamide. Treatment with desipramine to inhibit acid sphingomyelinase or YM201636 to inhibit PIKfyve also reduced the cytoplasmic calcium increase triggered by ML-SA1, whereas RPE cells from TRPML1-/- mice showed no response to ML-SA1. Cotreatment with chloroquine and U18666A induced formation of neutral, autofluorescent lipid in RPE lysosomes and decreased lysosomal Ca2+ release. Lysosomal Ca2+ release was also impaired in RPE cells from the ATP-binding cassette, subfamily A, member 4-/- mouse model of Stargardt's retinal dystrophy. Neither TRPML1 mRNA nor total lysosomal calcium levels were altered in these models, suggesting a more direct effect on the channel. In summary, stimulation of TRPML1 elevates cytoplasmic calcium levels in RPE cells, but this response is reduced by lysosomal accumulation.-Gómez, N. M., Lu, W. Lim, J. C., Kiselyov, K., Campagno, K. E., Grishchuk, Y., Slaugenhaupt, S. A., Pfeffer, B., Fliesler, S. J., Mitchell, C. H. Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation.


Subject(s)
Calcium Signaling , Lipid Metabolism , Lysosomes/metabolism , Retinal Pigment Epithelium/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Calcium/metabolism , Cell Line , Disease Models, Animal , Humans , Lysosomes/pathology , Macular Degeneration/congenital , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Mice, Knockout , Phthalimides/pharmacology , Quinolines/pharmacology , Retinal Pigment Epithelium/pathology , Stargardt Disease , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/genetics
12.
Front Cell Neurosci ; 11: 227, 2017.
Article in English | MEDLINE | ID: mdl-28848393

ABSTRACT

Inflammatory responses play a key role in many neural pathologies, with localized signaling from the non-immune cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune signaling and can link neural insult to chronic inflammation. The NLRP3 inflammasome requires two stages to contribute: priming and activation. The priming stage involves upregulation of inflammasome components while the activation stage results in the assembly and activation of the inflammasome complex. The priming step can be rate limiting and can connect insult to chronic inflammation, but our knowledge of the signals that regulate NLRP3 inflammasome priming in sterile inflammation is limited. This study examined the link between mechanical strain and inflammasome priming in neural systems. Transient non-ischemic elevation of intraocular pressure increased mRNA for inflammasome components IL-1ß, NLRP3, ASC, and CASP1 in rat and mouse retinas. The elevation was greater 1 day after the insult, with the rise in IL-1ß most pronounced. The P2X7 receptor was implicated in the mechanosensitive priming of IL-1ß mRNA in vivo, as the antagonist Brilliant Blue G (BBG) blocked the increased expression, the agonist BzATP mimicked the pressure-dependent rise in IL-1ß, and the rise was absent in P2X7 knockout mice. In vitro measurements from optic nerve head astrocytes demonstrated an increased expression of IL-1ß following stretch or swelling. This increase in IL-1ß was eliminated by degradation of extracellular ATP with apyrase, or by the block of pannexin hemichannels with carbenoxolone, probenecid, or 10panx1 peptide. The rise in IL-1ß expression was also blocked by P2X7 receptor antagonists BBG, A839977 or A740003. The rise in IL-1ß was prevented by blocking transcription factor NFκB with Bay 11-7082, while the swelling-dependent fall in NFκB inhibitor IκB-α was reduced by A839977 and in P2X7 knockout mice. In summary, mechanical trauma to the retina primed NLRP3 inflammasome components, but only if there was ATP release through pannexin hemichannels, and autostimulation of the P2X7 receptor. As the P2X7 receptor can also trigger stage two of inflammasome assembly and activation, the P2X7 receptor may have a central role in linking mechanical strain to neuroinflammation.

13.
J Neurochem ; 141(3): 436-448, 2017 05.
Article in English | MEDLINE | ID: mdl-28244110

ABSTRACT

Mechanical strain in neural tissues can lead to the up-regulation and release of multiple cytokines including interleukin 6 (IL-6). In the retina, the mechanosensitive release of ATP can autostimulate P2X7 receptors on both retinal ganglion cell neurons and optic nerve head astrocytes. Here, we asked whether the purinergic signaling contributed to the IL-6 response to increased intraocular pressure (IOP) in vivo, and stretch or swelling in vitro. Rat and mouse eyes were exposed to non-ischemic elevations in IOP to 50-60 mmHg for 4 h. A PCR array was used to screen cytokine changes, with quantitative (q)PCR used to confirm mRNA elevations and immunoblots used for protein levels. P2X7 antagonist Brilliant Blue G (BBG) and agonist (4-benzoyl-benzoyl)-ATP (BzATP) were injected intravitreally. ELISA was used to quantify IL-6 release from optic nerve head astrocytes or retinal ganglion cells. Receptor identity was confirmed pharmacologically and in P2X7-/- mice, acute elevation of IOP altered retinal expression of multiple cytokine genes. Elevation of IL-6 was greatest, with expression of IL1rn, IL24, Tnf, Csf1, and Lif also increased more than twofold, while expression of Tnfsf11, Gdf9, and Tnfsf4 were reduced. qPCR confirmed the rise in IL-6 and extracellular ATP marker ENTPD1, but not pro-apoptotic genes. Intravitreal injection of P2X7 receptor antagonist BBG prevented the pressure-dependent rise in IL-6 mRNA and protein in the rat retina, while injection of P2X7 receptor agonist BzATP was sufficient to elevate IL-6 expression. IOP elevation increased IL-6 in wild-type but not P2X7R knockout mice. Application of mechanical strain to isolated optic nerve head astrocytes increased IL-6 levels. This response was mimicked by agonist BzATP, but blocked by antagonists BBG and A839977. Stretch or BzATP led to IL-6 release from both astrocytes and isolated retinal ganglion cells. The mechanosensitive up-regulation and release of cytokine IL-6 from the retina involves the P2X7 receptor, with both astrocytes and neurons contributing to the response.


Subject(s)
Astrocytes/metabolism , Interleukin-6/physiology , Neurons/metabolism , Receptors, Purinergic P2X7/physiology , Adenosine Triphosphate/administration & dosage , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Gene Expression Regulation/drug effects , Injections , Interleukin-6/genetics , Intraocular Pressure , Mice , Mice, Knockout , Optic Nerve/pathology , Purinergic P2X Receptor Agonists/administration & dosage , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/genetics , Retinal Ganglion Cells/drug effects , Up-Regulation/genetics , Vitreous Body
14.
Front Cell Neurosci ; 10: 270, 2016.
Article in English | MEDLINE | ID: mdl-27932954

ABSTRACT

Mechanical strain due to increased pressure or swelling activates inflammatory responses in many neural systems. As cytokines and chemokine messengers lead to both pro-inflammatory and neuroprotective actions, understanding the signaling patterns triggered by mechanical stress may help improve overall outcomes. While cytokine signaling in neural systems is often associated with glial cells like astrocytes and microglia, the contribution of neurons themselves to the cytokine response is underappreciated and has bearing on any balanced response. Mechanical stretch of isolated neurons was previously shown to trigger ATP release through pannexin hemichannels and autostimulation of P2X7 receptors (P2X7Rs) on the neural membrane. Given that P2X7Rs are linked to cytokine activation in other cells, this study investigates the link between neuronal stretch and cytokine release through a P2X7-dependent pathway. Cytokine assays showed application of a 4% strain to isolated rat retinal ganglion cells (RGCs) released multiple cytokines. The P2X7R agonist BzATP also released multiple cytokines; Interleukin 3 (IL-3), TNF-α, CXCL9, VEGF, L-selectin, IL-4, GM-CSF, IL-10, IL-1Rα, MIP and CCL20 were released by both stimuli, with the release of IL-3 greatest with either stimuli. Stretch-dependent IL-3 release was confirmed with ELISA and blocked by P2X7R antagonists A438079 and Brilliant Blue G (BBG), implicating autostimulation of the P2X7R in stretch-dependent IL-3 release. Neuronal IL-3 release triggered by BzATP required extracellular calcium. The IL-3Rα receptor was expressed on RGCs but not astrocytes, and both IL-3Rα and IL-3 itself were predominantly expressed in the retinal ganglion cell layer of adult retinal sections, implying autostimulation of receptors by released IL-3. While the number of surviving ganglion cells decreased with time in culture, the addition of IL-3 protected against this loss of neurons. Expression of mRNA for IL-3 and IL-3Rα increased in rat retinas stretched with moderate intraocular pressure (IOP) elevation; BBG blocked the rise in IL-3, implicating a role for the P2X7R in transcriptional regulation in vivo. In summary, mechanical stretch triggers release of cytokines from neurons that can convey neuroprotection. The enhancement of these signals in vivo implicates P2X7R-mediated IL-3 signaling as an endogenous pathway that could minimize damage following neuronal exposure to chronic mechanical strain.

16.
Invest Ophthalmol Vis Sci ; 56(5): 3075-83, 2015 May.
Article in English | MEDLINE | ID: mdl-26024091

ABSTRACT

PURPOSE: The cellular mechanisms linking elevated IOP with glaucomatous damage remain unresolved. Mechanical strains and short-term increases in IOP can trigger ATP release from retinal neurons and astrocytes, but the response to chronic IOP elevation is unknown. As excess extracellular ATP can increase inflammation and damage neurons, we asked if sustained IOP elevation was associated with a sustained increase in extracellular ATP in the posterior eye. METHODS: No ideal animal model of chronic glaucoma exists, so three different models were used. Tg-Myoc(Y437H) mice were examined at 40 weeks, while IOP was elevated in rats following injection of hypertonic saline into episcleral veins and in cynomolgus monkeys by laser photocoagulation of the trabecular meshwork. The ATP levels were measured using the luciferin-luciferase assay while levels of NTPDase1 were assessed using qPCR, immunoblots, and immunohistochemistry. RESULTS: The ATP levels were elevated in the vitreal humor of rats, mice, and primates after a sustained period of IOP elevation. The ecto-ATPase NTPDase1 was elevated in optic nerve head astrocytes exposed to extracellular ATP for an extended period. NTPDase1 was also elevated in the retinal tissue of rats, mice, and primates, and in the optic nerve of rats, with chronic elevation in IOP. CONCLUSIONS: A sustained elevation in extracellular ATP, and upregulation of NTPDase1, occurs in the posterior eye of rat, mouse, and primate models of chronic glaucoma. This suggests the elevation in extracellular ATP may be sustained in chronic glaucoma, and implies a role for altered purinergic signaling in the disease.


Subject(s)
Adenosine Triphosphate/metabolism , Antigens, CD/genetics , Apyrase/genetics , Disease Models, Animal , Glaucoma/metabolism , Intraocular Pressure/physiology , Posterior Eye Segment/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Cell Count , Chronic Disease , Female , Immunoblotting , Immunohistochemistry , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Inbred BN , Real-Time Polymerase Chain Reaction , Retinal Ganglion Cells/pathology , Signal Transduction
17.
Exp Eye Res ; 126: 68-76, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25152362

ABSTRACT

Lysosomes contribute to a multitude of cellular processes, and the pH of the lysosomal lumen plays a central mechanistic role in many of these functions. In addition to controlling the rate of enzymatic degradation for material delivered through autophagic or phagocytotic pathways, lysosomal pH regulates events such as lysosomal fusion with autophagosomes and the release of lysosomal calcium into the cytoplasm. Disruption of either the steady state lysosomal pH or of the regulated manipulations to lysosomal pH may be pathological. For example, chloroquine elevates the lysosomal pH of retinal pigmented epithelial (RPE) cells and triggers a retinopathy characterized by the accumulation of lipofuscin-like material in both humans and animals. Compensatory responses to restore lysosomal pH are observed; new data illustrate that chronic chloroquine treatment increases mRNA expression of the lysosomal/autophagy master transcription factor TcFEB and of the vesicular proton pump vHATPase in the RPE/choroid of mice. An elevated lysosomal pH with upregulation of TcFEB and vHATPase resembles the pathology in fibroblasts of patients with mutant presenilin 1 (PS1), suggesting a common link between age-related macular degeneration (AMD) and Alzheimer's disease. While the absolute rise in pH is often small in these disorders, elevations of only a few tenths of a pH unit can have a major impact on both lysosomal function and the accumulation of waste over decades. Accurate measurement of lysosomal pH can be complex, and imprecise measurements have clouded the field. Protocols to optimize pH measurement from fresh and cultured cells are discussed, and indirect measurements to confirm changes in lysosomal pH and degradative capacity are addressed. The ability of reacidifying treatments to restore degradative function confirms the central role of lysosomal pH in these disorders and identifies potential approaches to treat diseases of lysosomal accumulation like AMD and Alzheimer's disease. In summary, various approaches to determine lysosomal pH in fresh and cultured cells, as well as the potential to restore pH levels to an optimal range, can help identify and repair pathologies associated with lysosomal defects in RPE cells and perhaps also suggest new approaches to treat lysosomal storage diseases throughout the body.


Subject(s)
Epithelial Cells/physiology , Lysosomes/physiology , Retinal Degeneration/physiopathology , Retinal Pigment Epithelium/cytology , Animals , Autophagy/physiology , Humans , Hydrogen-Ion Concentration , Retinal Pigment Epithelium/pathology
18.
Glia ; 62(9): 1486-501, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24839011

ABSTRACT

As adenosine 5'-triphosphate (ATP) released from astrocytes can modulate many neural signaling systems, the triggers and pathways for this ATP release are important. Here, the ability of mechanical strain to trigger ATP release through pannexin channels and the effects of sustained strain on pannexin expression were examined in rat optic nerve head astrocytes. Astrocytes released ATP when subjected to 5% of equibiaxial strain or to hypotonic swelling. Although astrocytes expressed mRNA for pannexins 1-3, connexin 43, and VNUT, pharmacological analysis suggested a predominant role for pannexins in mechanosensitive ATP release, with Rho kinase contribution. Astrocytes from panx1(-/-) mice had reduced baseline and stimulated levels of extracellular ATP, confirming the role for pannexins. Swelling astrocytes triggered a regulatory volume decrease that was inhibited by apyrase or probenecid. The swelling-induced rise in calcium was inhibited by P2X7 receptor antagonists A438079 and AZ10606120, in addition to apyrase and carbenoxolone. Extended stretch of astrocytes in vitro upregulated expression of panx1 and panx2 mRNA. A similar upregulation was observed in vivo in optic nerve head tissue from the Tg-MYOC(Y437H) mouse model of chronic glaucoma; genes for panx1, panx2, and panx3 were increased, whereas immunohistochemistry confirmed increased expression of pannexin 1 protein. In summary, astrocytes released ATP in response to mechanical strain, with pannexin 1 the predominant efflux pathway. Sustained strain upregulated pannexins in vitro and in vivo. Together, these findings provide a mechanism by which extracellular ATP remains elevated under chronic mechanical strain, as found in the optic nerve head of patients with glaucoma.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/physiology , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Optic Disk/physiology , Stress, Mechanical , Animals , Astrocytes/drug effects , Cells, Cultured , Connexins/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Glaucoma/physiopathology , Glycoproteins/genetics , Glycoproteins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nucleotide Transport Proteins/metabolism , Optic Disk/drug effects , Osmotic Pressure/physiology , Purinergic P2X Receptor Antagonists/pharmacology , Rats, Long-Evans
19.
FASEB J ; 27(11): 4500-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23964074

ABSTRACT

Lysosomal enzymes function optimally at low pH; as accumulation of waste material contributes to cell aging and disease, dysregulation of lysosomal pH may represent an early step in several pathologies. Here, we demonstrate that stimulation of the P2X7 receptor (P2X7R) for ATP alkalinizes lysosomes in cultured human retinal pigmented epithelial (RPE) cells and impairs lysosomal function. P2X7R stimulation did not kill RPE cells but alkalinized lysosomes by 0.3 U. Receptor stimulation also elevated cytoplasmic Ca(2+); Ca(2+) influx was necessary but not sufficient for lysosomal alkalinization. P2X7R stimulation decreased access to the active site of cathepsin D. Interestingly, lysosomal alkalinization was accompanied by a rise in lipid oxidation that was prevented by P2X7R antagonism. Likewise, the autofluorescence of phagocytosed photoreceptor outer segments increased by lysosomal alkalinization was restored 73% by a P2X7R antagonist. Together, this suggests that endogenous autostimulation of the P2X7R may oxidize lipids and impede clearance. The P2X7R was expressed on apical and basolateral membranes of mouse RPE; mRNA expression of P2X7R and extracellular ATP marker NTPDase1 was raised in RPE tissue from the ABCA4(-/-) mouse model of Stargardt's retinal degeneration. In summary, P2X7R stimulation raises lysosomal pH and impedes lysosomal function, suggesting a possible role for overstimulation in diseases of accumulation.


Subject(s)
Lipid Metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Receptors, Purinergic P2X7/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Calcium/metabolism , Cattle , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Cytoplasm/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/genetics , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Transcription, Genetic
20.
PLoS One ; 7(12): e49635, 2012.
Article in English | MEDLINE | ID: mdl-23272048

ABSTRACT

Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.


Subject(s)
Lysosomes/metabolism , Nanoparticles/chemistry , Nanotechnology/methods , Animals , Boron Compounds/chemistry , Catalytic Domain , Cathepsin D/chemistry , Cattle , Cell Line , Cells, Cultured , Chloroquine/chemistry , Flow Cytometry/methods , Humans , Hydrogen-Ion Concentration , Immunoblotting , Lactic Acid/chemistry , Lipofuscin/chemistry , Opsins/chemistry , Pepstatins/chemistry , Phagocytosis , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Retina/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...