Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 105(4-2): 045105, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590576

ABSTRACT

It is fascinating that fish groups spontaneously form different formations. The collective locomotions of two and multiple undulatory self-propelled foils swimming in a fluid are numerically studied and the deep reinforcement learning (DRL) is applied to control the locomotion. We explored whether typical patterns emerge spontaneously under the driven two DRL strategies. One strategy is that only the following fish gets hydrodynamic advantages. The other is that all individuals in the group take advantage of the interaction. In the DRL strategy, we use swimming efficiency as the reward function, and the visual information is included. We also investigated the effect of involving hydrodynamic force information, which is an analogy to that detected by the lateral line of fish. Each fish can adjust its undulatory phase to achieve the goal. Under the two strategies, collective patterns with different characteristics, i.e., the staggered-following, tandem-following phalanx and compact modes emerge. They are consistent with the results in the literature. The hydrodynamic mechanism of the above high-efficiency collective traveling modes is analyzed by the vortex-body interaction and thrust. We also found that the time sequence feature and hydrodynamic information in the DRL are essential to improve the performance of collective swimming. Our research can reasonably explain the controversial issue observed in the relevant experiments. The paper may be helpful for the design of bionic fish.

2.
Psychopharmacology (Berl) ; 239(5): 1459-1473, 2022 May.
Article in English | MEDLINE | ID: mdl-34741633

ABSTRACT

RATIONALE: In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS: Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS: A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION: These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.


Subject(s)
Cannabinoids , Central Nervous System Stimulants , Amphetamine/pharmacology , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/pharmacology , Humans , Impulsive Behavior , Male , Rats , Receptor, Cannabinoid, CB1 , Rimonabant/pharmacology
3.
Phys Rev E ; 104(5-2): 055104, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942766

ABSTRACT

The nonlinear evolution of mixing layer in cylindrical Rayleigh-Taylor (RT) turbulence is studied theoretically and numerically. The scaling laws including the hyperbolic cosine growth for outward mixing layer and the cosine growth for inward mixing layer of the cylindrical RT turbulence are proposed for the first time and verified reliably by direct numerical simulation of the Navier-Stokes equations. It is identified that the scaling laws for the cylindrical RT turbulence transcend the classical power law for the planar RT turbulence and can be recovered to the quadratic growth as cylindrical geometry effect vanishes. Further, characteristic time- and length scales are reasonably obtained based on the scaling laws to reveal the self-similar evolution features for the cylindrical RT turbulence.

4.
Phys Rev E ; 102(5-1): 053106, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327113

ABSTRACT

Intermittent locomotion is a widely used behavioral strategy for fish and birds to reduce the cost of movement. The intermittent locomotion performance of a self-propelled flapping plate is investigated numerically. Two intermittent swimming modes, namely, the multiple-tail-beat mode (MT mode) and the half-tail-beat mode (HT mode), as well as the continuous swimming mode (CT mode), are considered. Performance is evaluated from propulsive speed, efficiency, and cost of transport. The hydrodynamic performances of the intermittent modes are found to be better than the hydrodynamic performance of the CT mode when the bending stiffness K is moderate [i.e., K≈O(1)] and the duty cycle is not too small. For the two intermittent modes, the performance of the HT mode is better than that of the MT mode when K is small or moderate, while the situation is opposite when K is large. It is found that compared to the asymmetric wake of the MT mode, the symmetric wake of the HT mode is favorable to generate more thrust force and therefore achieve better performance. Besides, at moderate K, the largest bending deformation of the plate in the HT mode, as well as the large normal force, produces the largest thrust during the flapping. The present results can help us to better understand the intermittent locomotion of animals and may be helpful for bionic design.

5.
Phys Rev E ; 101(5-1): 053107, 2020 May.
Article in English | MEDLINE | ID: mdl-32575301

ABSTRACT

Droplets interacting with deformable moving boundaries is ubiquitous. The flexible boundaries may dramatically affect the hydrodynamic behavior of droplets. A numerical method for simulating droplet impact on flexible substrates is developed. The effect of flexibility is investigated. To reduce the contact time and increase the remaining upward momentum in the flexible cases, the Weber number should be larger than a critical value. Moreover, the ratio of the natural frequency of the plate to that of the droplet F_{r} should approximately equal to the reciprocal of the contact time of droplets impact on the rigid surfaces (t_{ctr}) at the same We, e.g., F_{r}≈1/t_{ctr}. Only under this circumstance would the kinetic energy convert into the surface energy of the droplet and the elastic energy of the plate simultaneously, and vice versa. Moreover, based on a double spring model, we proposed scaling laws for the maximal deflection of the plate and spreading diameter of the drop. Finally, the droplet impact under different wettability is qualitatively studied. We found that the flexibility may contribute to the droplet bouncing at a smaller contact angle.

6.
Langmuir ; 36(13): 3439-3451, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32183513

ABSTRACT

The evaporation mechanism of miscible binary nanodroplets from heated homogeneous surfaces was studied by molecular dynamics simulations, which has never been studied before. The binary droplets contain a hydrophilic component (type-2 particles) and a hydrophobic component (type-3 particles). It is shown that liquid-liquid interaction strength (ε23) and hydrophilic particle number fraction (φ) have great influence on the surface tension, wetting characteristics, evaporation patterns, evaporation rate, and local mass flux. It is observed that when ε23 ≥ 1, or φ ≈ 0.5, the evaporation mode is the constant-contact-angle mode. Otherwise, it is the mixed mode. We found that the evaporation rate becomes faster when φ and ε23 increase. The droplets become more hydrophilic when φ increases, which promotes heat transfer efficiency between the liquid-solid interface. Besides, a larger ε23 promotes the heat transfer inside the droplet. The mass transfer to the vapor phase occurs preferentially in the vicinity of TPCL (three phase contact line) in the hydrophilic systems (θ < θc), where θc is the critical contact angle, while in most hydrophobic systems (θ > θc), the mass flux close to the TPCL is suppressed. We found that θc ∈ (102°-106°), which is different from the theoretical one, θc = 90°. The discrepancy is attributed to the existence of the adsorption layer near the TPCL.

7.
Phys Rev E ; 100(3-1): 033114, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31640063

ABSTRACT

Fish may take advantage of environmental vortices to save the cost of locomotion. The complex hydrodynamics shed from multiple physical objects may significantly affect fish refuging (holding stationary). Taking a model of a self-propelled flapping plate, we numerically studied the locomotion of the plate in wakes of two tandem cylinders. In most simulations, the plate heaves at its initial position G_{0} before the flow comes (releasing Style I). In the typical wake patterns, the plate may hold stationary, drift upstream, or drift downstream. The phase diagrams of these modes in the G_{0}-A plane for the vortex shedding patterns were obtained, where A is the flapping amplitude. It is observed that the plate is able to hold stationary at multiple equilibrium locations after it is released. Meanwhile, the minimum amplitude and the input power required for the plate seem inversely proportional to the shedding vortex strength. The effect of releasing style was also investigated. If the plate keeps stationary and does not flap until the vortex shedding is fully developed (releasing Style II), then the plate is able to hold stationary at some equilibrium locations but the flapping plate has a very minor effect on the shedding vortices. However, in Style I, the released plate is able to achieve more equilibrium locations through adjusting the phase of vortex shedding. The effort of the preflapping in Style I is not in vain, because although it consumes more energy, it becomes easier to hold stationary later. The relevant mechanism is explored.

8.
Langmuir ; 35(19): 6356-6366, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31008602

ABSTRACT

Droplet evaporation on heterogeneous or patterned surfaces has numerous potential applications, for example, inkjet printing. The effect of surface heterogeneities on the evaporation of a nanometer-sized cylindrical droplet on a solid surface is studied using molecular dynamics simulations of Lennard-Jones particles. Different heterogeneities of the surface were achieved through alternating stripes of equal width but two chemical types, which lead to different contact angles. The evaporation induced by the heated substrate instead of the isothermal evaporation is investigated. It is found that the whole evaporation process is generally dominated by the nonuniform evaporation effect. However, at the initial moment, the volume expansion and local evaporation effects play important roles. From the nanoscale point of view, the slow movement of the contact line during the pinning process is observed, which is different from the macroscopic stationary pinning. Particularly, we found that the speed of the contact line may be not only affected by the intrinsic energy barrier between the two adjacent stripes ( u) but also relevant to the evaporation rate. Generally speaking, the larger the intrinsic energy barrier, the slower the movement of the contact line. At the specified temperature, when u is less than a critical energy barrier ( u*), the speed of the contact line would increase with the evaporate rate. When u > u*, the speed of the contact line is determined only by u and no longer affected by the evaporation rate at different stages (the first stick and the second stick).

9.
Phys Rev E ; 94(3-1): 033113, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739807

ABSTRACT

The self-propulsion of a three-dimensional flapping flexible plate near the ground is studied using an immersed boundary-lattice Boltzmann method for fluid flow and a finite-element method for plate motion. When the leading edge of the flexible plate is forced into a vertical oscillation near the ground, the entire plate moves freely due to the fluid-structure interaction. The mechanisms underlying the dynamics of the plate near the ground are elucidated. Based on the propulsive behaviors of the flapping plate, three distinct regimes due to the ground effect can be qualitatively identified. These regimes can be described briefly as the expensive, benefited, and uninfluenced propulsion regimes. The analysis of unsteady dynamics and plate deformation indicates that the ground effect becomes weaker for a more flexible plate. We have found that a suitable degree of flexibility can improve propulsion near the ground. The vortical structure around the plate and the pressure distribution on the plate are analyzed to understand propulsive behaviors. The results obtained in this study can provide some physical insights into the propulsive mechanisms of a flapping flexible plate near the ground.

10.
J Biomech ; 48(10): 1922-9, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25911249

ABSTRACT

Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam.


Subject(s)
Blood Pressure/physiology , Blood Vessels/physiology , Models, Cardiovascular , Computer Simulation , Elasticity , Humans , Hydrodynamics , Models, Biological , Motion , Oscillometry , Pressure , Shear Strength , Stress, Mechanical , Time Factors , Viscosity
11.
Article in English | MEDLINE | ID: mdl-25768598

ABSTRACT

A partially wetting plate withdrawn from a liquid reservoir causes the deposition of a liquid film that is characterized by inclined contact lines. It has been experimentally indicated that the normal component of the contact-line velocity relative to the plate remains constant and is independent of the inclination angles, a fact that has never theoretically been justified. We demonstrate, in the framework of lubrication theory, that the speed-angle independence is only approximate and the normal velocity actually exhibits a weak decrease with the inclination angle of the contact line. This correlation is attributed to the variation of the effective separation of microscopic and macroscopic length scales. In addition, the inclination of the contact line results in a tangential flux of the liquid, which is confined in the vicinity of the contact line. Simple scaling relations are provided for both the normal velocity and the tangential flux.

12.
Comput Biol Med ; 43(9): 1098-113, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23930803

ABSTRACT

Atherosclerotic plaque can cause severe stenosis in the artery lumen. Blood flow through a substantially narrowed artery may have different flow characteristics and produce different forces acting on the plaque surface and artery wall. The disturbed flow and force fields in the lumen may have serious implications on vascular endothelial cells, smooth muscle cells, and circulating blood cells. In this work a simplified model is used to simulate a pulsatile non-Newtonian blood flow past a stenosed artery caused by atherosclerotic plaques of different severity. The focus is on a systematic parameter study of the effects of plaque size/geometry, flow Reynolds number, shear-rate dependent viscosity and flow pulsatility on the fluid wall shear stress and its gradient, fluid wall normal stress, and flow shear rate. The computational results obtained from this idealized model may shed light on the flow and force characteristics of more realistic blood flow through an atherosclerotic vessel.


Subject(s)
Atherosclerosis , Blood Viscosity , Models, Cardiovascular , Plaque, Atherosclerotic , Pulsatile Flow , Stress, Physiological , Atherosclerosis/blood , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Constriction, Pathologic/blood , Constriction, Pathologic/pathology , Constriction, Pathologic/physiopathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/physiopathology
13.
Article in English | MEDLINE | ID: mdl-23410454

ABSTRACT

In this paper, a scheme for specifying contact angle and its hysteresis is incorporated into a multiphase lattice Boltzmann method. The scheme is validated through investigations of the dynamic behaviors of a droplet sliding along two kinds of walls: a smooth (ideal) wall and a rough or chemically inhomogeneous (nonideal) wall. For an ideal wall, the wettability of solid substrates is able to be prescribed. For a nonideal wall, arbitrary contact angle hysteresis can be obtained through adjusting advancing and receding angles. Significantly different phenomena can be recovered for the two kinds of walls. For instance, a droplet on an inclined ideal wall under gravity is impossible to stay stationary. However, the droplet on a nonideal wall may be pinned due to contact angle hysteresis. The steady interface shapes of the droplet on an inclined nonideal wall under gravity or in a shear flow quantitatively agree well with the previous numerical studies. Besides, the complex motion of a droplet creeping like an inchworm could be simulated. The scheme is found suitable for the study of contact line problems with and without contact angle hysteresis.


Subject(s)
Algorithms , Models, Theoretical , Numerical Analysis, Computer-Assisted , Rheology/methods , Computer Simulation
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 016304, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23005522

ABSTRACT

A body with a traveling-wave surface (TWS) is investigated by solving the incompressible Navier-Stokes equation numerically to understand the mechanisms of a novel propulsive strategy. In this study, a virtual model of a foil with a flexible surface which performs a traveling-wave movement is used as a free swimming body. Based on the simulations by varying the traveling-wave Reynolds number and the amplitude and wave number of the TWS, some propulsive properties including the forward speed, the swimming efficiency, and the flow field are analyzed in detail. It is found that the mean forward velocity increases with the traveling-wave Reynolds number, the amplitude, and the wave number of the TWS. A weak wake behind the free swimming body is identified and the propulsive mechanisms are discussed. Moreover, the TWS is a "quiet" propulsive approach, which is an advantage when preying. The results obtained in this study provide a novel propulsion concept, which may also lead to an important design capability for underwater vehicles.


Subject(s)
Models, Biological , Rheology/methods , Swimming/physiology , Animals , Computer Simulation , Humans
15.
J Comput Phys ; 230(19): 7266-7283, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-23564971

ABSTRACT

We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026301, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866899

ABSTRACT

A filament flapping in the bow wake of a rigid body is considered in order to study the hydrodynamic interaction between flexible and rigid bodies in tandem arrangement. Both numerical and experimental methods are adopted to analyze the motion of the filament, and the drag force on both bodies is computed. It is shown that the results largely depend on the gap between the two objects and the Reynolds number. The flexible body may have larger vibration amplitude but meanwhile experience a reduced drag force. On the other hand, the trailing rigid body enjoys a drag reduction. The qualitative behavior of the filament is independent of the filament's length and mass ratio or the shape of the rigid body for the parameter regime considered. The result is in contrast with the interaction between two rigid or two flexible objects in tandem arrangement, and it may provide a physical insight into the understanding of the aquatic animals swimming in the bow wake of ships or staying in the bow wake of stationary structures.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036305, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365852

ABSTRACT

The experiments on two tandem circular cylinders were conducted in a horizontal soap film tunnel for the Reynolds number Re=60 , 80, and 100 and the nondimensional center-to-center spacing Gamma ranging in 1 approximately 12. The flow patterns were recorded by a high-speed camera and the vortex shedding frequency was obtained by a spatiotemporal evolution method. The secondary vortex formation (SVF) mode characterized by the formation of a secondary vortex street in the wake of the downstream cylinder was found at large gamma. Moreover, some typical modes predicted by previous investigations, including the single bluff-body, shear layer reattachment, and synchronization of vortex shedding modes, were also revisited in our experiments. Further, numerical simulations were carried out using a space-time finite-element method and the results confirmed the existence of the SVF mode. The mechanism of SVF mode was analyzed in terms of the numerical results. The dependence of the Strouhal number Sr on Gamma was given and the flow characteristics relevant to the critical spacing values and the hysteretic mode transitions were investigated.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016701, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658832

ABSTRACT

The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday, Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models' accuracy and tau sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of tau sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 017302, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19658843

ABSTRACT

Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight has been studied using a multiblock lattice Boltzmann method. We find that the interactions between forewing and hindwing effectively enhance the total lift force and reduce the drag force on the wings compared to two independent wings. The interaction mechanism may be associated with the triangular camber effect by modulating the relative arrangement of the forewing and hindwing. The results obtained in this Brief Report provide physical insight into the understanding of aerodynamic behaviors for gliding dragonfly flight.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 045306, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19518291

ABSTRACT

We present the results of a numerical study of flow past an inclined flat plate and reveal a route of the transition from steady to chaotic flow. We find that the chaotic flow regime can be reached through the sequential occurrence of successive period-doubling bifurcations and various incommensurate bifurcations. The results provide physical insight into the understanding of fundamental flow behaviors underlying in this flow system and complement the transition phenomenon from steady to chaotic flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...