Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Metabolism ; 134: 155249, 2022 09.
Article in English | MEDLINE | ID: mdl-35792174

ABSTRACT

BACKGROUND AND PURPOSE: The senescence-accelerated mouse P1 (SAMP1) suffers from humoral immune deficiency, arterial stiffness and accelerated aging. In contrast, the microRNA-150 knockout (miR-150-KO) mice show enhanced humoral immune function including increased B cell population and elevated serum immunoglobulin levels and enjoy extended lifespan. The purpose of this study was to investigate whether transplantation of bone marrow cells (BMCs) from miR-150-KO mice affects immune deficiency and arterial stiffening in SAMP1 mice. METHODS AND RESULTS: Pulse wave velocity and blood pressure were increased significantly in SAMP1 mice (10 months), indicating arterial stiffening and hypertension. Interestingly, transplantation of BMCs from miR-150-KO mice significantly attenuated arterial stiffening and hypertension in SAMP1 mice within eight weeks. BMC transplantation from miR-150-KO mice partially rescued the downregulation of B lymphocytes, largely restored serum IgG and IgM levels, decreased inflammatory cytokine and chemokine expression, and attenuated macrophage and T cell infiltration in aortas in SAMP1 mice. BMC transplantation nearly abolished the upregulation of collagen 1, TGFß1, Scleraxis, MMP-2 and MMP-9 expression and the downregulation of elastin levels in aortas in SAMP1 mice. FISH staining confirmed existence of the transplanted BMCs at end of the experiment. In cultured endothelial cells, IgG-deficient medium invoked upregulation of inflammatory cytokine/chemokine expression which can be rescued by treatment with IgG. CONCLUSIONS: Accelerated senescence caused arterial stiffening via impairing the humoral immune function in SAMP1 mice. BMC transplantation from miR-150-KO mice attenuated arterial matrix remodeling and stiffening and hypertension in SAMP1 mice partly via improving the humoral immune function which attenuates vascular inflammation.


Subject(s)
Bone Marrow Transplantation , Hypertension , Membrane Proteins , MicroRNAs , Nuclear Proteins , Vascular Stiffness , Animals , Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Hypertension/genetics , Hypertension/metabolism , Immunoglobulin G , Membrane Proteins/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Nuclear Proteins/genetics , Pulse Wave Analysis , Vascular Stiffness/genetics , Vascular Stiffness/physiology
2.
Mol Cytogenet ; 15(1): 17, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440058

ABSTRACT

BACKGROUND: Partial trisomy of the long arm of chromosome 11 is a rare cytogenetic abnormality. It has been characterized by variable sized duplications that lead to a range of phenotypes including growth retardation, developmental delay/intellectual disability, and distinctive craniofacial abnormalities. Congenital heart defects, skeletal abnormalities, urogenital anomalies, and hypotonia are found in some affected individuals. METHODS: We describe a 16-year-old patient presented with most of the hallmark phenotypes of trisomy 11q syndrome as well as exhibiting symptoms of hearing loss, seizures, and abnormal endocrinological and ophthalmological findings. Routine chromosome analysis and subsequent chromosomal microarray analysis (CMA) were performed to detect genetic abnormalities in this patient. RESULTS: We identified an abnormal male karyotype with a derivative chromosome 4 due to an unbalanced translocation between chromosomes 4 and chromosome 11. The CMA results revealed a 56 Mb duplication of chromosome 11q14.1-qter and a 874 Kb terminal deletion of the short arm of chromosome 4. CONCLUSION: A genomic imbalance resulting in partial trisomy 11q was found in a patient with multiple congenital anomalies. We compared the phenotypes of all known "pure" trisomy 11q cases in the literature and find that trisomy 11q23-qter is both recurrent and the most common cytogenetic abnormality found in the reported cases. It is associated with the core features of trisomy 11q syndrome.

3.
Front Oncol ; 12: 854192, 2022.
Article in English | MEDLINE | ID: mdl-35359401

ABSTRACT

Sprouty-related, EVH1 domain-containing protein 1 (SPRED1) has been identified as a novel tumor suppressor gene in acute myeloid leukemia (AML). Previous studies showed that SPRED1 methylation levels were significantly increased in AML patients, making it an interesting candidate for further investigations. To confirm the association of SPRED1 methylation, clinical parameters, and known molecular prognosticators and to identify the impact of methylation level on treatment outcome, we conducted this study in a larger cohort of 75 AML patients. Significantly increased methylation levels of SPRED1 were detected at four of ten CpG units by quantitative high-resolution mass spectrometry-based approach (MassARRAY) in AML patients. Whereas overall survival (OS) and relapse-free survival (RFS) showed no statistical difference between hypermethylation and hypomethylation subgroups, the relationship between methylation level and treatment response was indicated in paired samples from pre- and post-induction. To determine the possible mechanism of SPRED1 methylation in AML, we performed in vitro experiments using THP-1 cells, as the latter showed the highest methylation level (determined by utilizing bisulfite modification) among the three AML cell lines we tested. When treated with 5-AZA and lentivirus transfection, upregulated SPRED1 expression, decreased cell proliferation, increased cell differentiation and apoptosis, and inactivated phosphorylated extracellular signal-regulated kinase (p-ERK) were detected in THP-1 cells. These results show that demethylation of SPRED1 can inhibit the proliferation of AML cells and promote their differentiation and apoptosis, possibly by the ERK pathway. The hypermethylation of SPRED1 is a potential therapeutic target for AML.

4.
J Biomed Opt ; 27(1)2022 01.
Article in English | MEDLINE | ID: mdl-35102727

ABSTRACT

SIGNIFICANCE: Searching analyzable metaphase chromosomes is a critical step for the diagnosis and treatment of leukemia patients, and the searching efficiency is limited by the difficulty that the conventional microscopic systems have in simultaneously achieving high resolution and a large field of view (FOV). However, this challenge can be addressed by Fourier ptychography microscopy (FPM) technology. AIM: The purpose of this study is to investigate the feasibility of utilizing FPM to reconstruct high-resolution chromosome images. APPROACH: An experimental FPM prototype, which was equipped with 4 × / 0.1 NA or 10 × / 0.25 NA objective lenses to achieve a theoretical equivalent NA of 0.48 and 0.63, respectively, was developed. Under these configurations, we first generated the system modulation transfer function (MTF) curves to assess the resolving power. Next, a group of analyzable metaphase chromosomes were imaged by the FPM system, which were acquired from the peripheral blood samples of the leukemia patients. The chromosome feature qualities were evaluated and compared with the results accomplished by the corresponding conventional microscopes. RESULTS: The MTF curve results indicate that the resolving power of the 4 × / 0.1 NA FPM system is equivalent and comparable to the 20 × / 0.4 NA conventional microscope, whereas the performance of the 10 × / 0.25 NA FPM system is close to the 60 × / 0.95 NA conventional microscope. When imaging the chromosomes, the feature qualities of the 4 × / 0.1 NA FPM system are comparable to the results under the conventional 20 × / 0.4 NA lens, whereas the feature qualities of the 10 × / 0.25 NA FPM system are better than the conventional 60 × / 0.95 NA lens and comparable to the conventional 100 × / 1.25 NA lens. CONCLUSIONS: This study initially verified that it is feasible to utilize FPM to develop a high-resolution and wide-field chromosome sample scanner.


Subject(s)
Lenses , Microscopy , Chromosomes , Fourier Analysis , Humans , Microscopy/methods
5.
Front Genet ; 12: 697009, 2021.
Article in English | MEDLINE | ID: mdl-34447409

ABSTRACT

BACKGROUND: Submicroscopic segmental imbalances detected by array-comparative genomic hybridization (array-CGH) were discovered to be common in chronic myeloid leukemia (CML) patients with t(9;22) as the sole chromosomal anomaly. To confirm the findings of the previous study and expand the investigation, additional CML patients with t(9;22) as the sole chromosomal anomaly were recruited and copy number variants (CNVs) were searched for. METHODS: Karyotyping tests were performed on 106 CML patients during January 2010-September 2019 in our Genetics Laboratory. Eighty-four (79.2%) patients had the Philadelphia (Ph) chromosome as the sole chromosomal anomaly. Only 49(58.3%) of these 84 patients had sufficient marrow or leukemia blood materials to additionally be included in the array-CGH analysis. Fluorescence in situ hybridization (FISH) was carried out to confirm the genes covered by the deleted or duplicated regions of the CNVs. RESULTS: 11(22.4%) out of the 49 patients were found to have one to three somatic segmental somatic segmental (CNVs), including fourteen deletions and three duplications. The common region associated with deletions was on 9q33.3-34.12. Identified in five (45.5%) of the 11 positive patients with segmental CNVs, the deletions ranged from 106 kb to 4.1 Mb in size. Two (18.2%) cases had a deletion in the ABL1-BCR fusion gene on der (9), while three (27.3%) cases had a deletion in the ASS1 gene. The remaining CNVs were randomly distributed on different autosomes. CONCLUSION: Subtle genomic CNVs are relatively common in CML patients without cytogenetically visible additional chromosomal aberrations (ACAs). Long-term studies investigating the potential impact on patient prognosis and treatment outcome is underway.

6.
Dis Markers ; 2021: 9932837, 2021.
Article in English | MEDLINE | ID: mdl-34194582

ABSTRACT

Double minute chromosomes (dmins) are a form of gene amplification presenting as small spherical paired chromatin bodies. Dmins are rare in hematologic malignancies and are generally associated with a poor prognosis. Some case reports identified MYC or MLL gene amplification performing as dmin in myeloid neoplasms. FLT3 (FMS-related tyrosine kinase 3) acts as an oncogene in myeloid neoplasms which is associated with several signal transduction pathways. Genomic amplification of FLT3 has not been reported in hematological disease. The current study attempts to demonstrate the existence of double minute chromosomes via FLT3 gene amplification in a patient diagnosed with chronic myelomonocytic leukemia (CMML). Routine G-banded karyotype, array-based comparative genomic hybridization, and fluorescence in situ hybridization analyses were used to characterize the cytogenetic abnormality in the patient's bone marrow. FLT3 amplification as dmins in a patient with CMML was revealed. This case study reports a rare double minute chromosome via FLT3 amplification in CMML by using array-based comparative genomic hybridization and fluorescence in situ hybridization analyses. The study also proposed another possible mechanism of FLT3 genes in leukemogenesis.


Subject(s)
Gene Amplification , Leukemia, Myelomonocytic, Chronic/genetics , fms-Like Tyrosine Kinase 3/genetics , Comparative Genomic Hybridization , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Male , Middle Aged , Ring Chromosomes
7.
Medicine (Baltimore) ; 99(43): e22789, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33120794

ABSTRACT

RATIONALE: The advent of high-resolution genome arrays including array comparative genomic hybridization (aCGH) has enabled the detection of cryptic submicroscopic deletions flanking translocation breakpoints in up to 20% of the apparently "balanced" structural chromosomal rearrangements in hematological disorders. However, reports of submicroscopic deletions flanking the breakpoints of t(3;5)(q25;q35) are rare and the clinical significance of submicroscopic deletions in t(3;5) has not been explicitly identified. PATIENT CONCERNS: We present a 47-year-old man with acute myeloid leukemia. G-banding analysis identified t(3;5)(q25;q35). DIAGNOSIS: Array CGH-based detection initially confirmed only the deletion of chromosome 3. Further characterization using fluorescence in situ hybridization identified a cryptic submicroscopic deletion including 5' MLF1-3' NPM1 flanking the breakpoint on the derivative chromosome 3. INTERVENTIONS: The patient started "7+3" induction chemotherapy with cytosine arabinoside and daunorubicin, and subsequently received 2 cycles of high-dose intermittent acronym of cytosine arabinoside or cytarabine. OUTCOMES: The patient did not undergo complete remission and died from an infection due to neutropenia. LESSONS: Haploinsufficiency of NPM1 or other deleted genes, including SSR3, may be responsible for the phenotype of t(3;5)(q25;q35)-positive myeloid neoplasms with submicroscopic deletions.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosome Banding , Comparative Genomic Hybridization , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/drug therapy , Male , Middle Aged , Nucleophosmin
8.
Mol Cytogenet ; 13: 37, 2020.
Article in English | MEDLINE | ID: mdl-32863883

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a complex hematological disease characterized by genetic and clinical heterogeneity. The identification and understanding of chromosomal abnormalities are important for the diagnosis and management of AML patients. Compared with recurrent chromosomal translocations in AML, t(8;16)(p11.2;p13.3) can be found in any age group but is very rare and typically associated with poor prognosis. METHODS: Conventional cytogenetic studies were performed among 1,824 AML patients recorded in our oncology database over the last 20 years. Fluorescence in situ hybridization (FISH) was carried out to detect the translocation fusion. Array comparative genome hybridization (aCGH) was carried out to further characterize the duplication of chromosomes. RESULTS: We identified three AML patients with t(8;16)(p11.2;p13.3) by chromosome analysis. Two of the three patients, who harbored an additional 1q duplication, were detected by FISH and aCGH. aCGH characterized a 46.7 Mb and 49.9 Mb gain in chromosome 1 at band q32.1q44 separately in these two patients. One patient achieved complete remission (CR) but relapsed 3 months later. The other patient never experienced CR and died 2 years after diagnosis. CONCLUSION: A 1q duplication was detected in two of three AML patients with t(8;16)(p11.2;p13.3), suggesting that 1q duplication can be a recurrent event in AML patients with t(8;16). In concert with the findings of previous studies on similar patients, our work suggests that 1q duplication may also be an unfavorable prognostic factor of the disease.

9.
Int J Med Sci ; 17(3): 325-331, 2020.
Article in English | MEDLINE | ID: mdl-32132867

ABSTRACT

Background: Hairy cell leukemia (HCL) is a rare chronic B-cell lymphoproliferative disorder. It has two pathological subtypes: classical HCL (HCL-C) and HCL-variant (HCL-V). HCL-C and HCL-V are distinct in morphology and immunophenotype. Their differentiation is important for patient management and clinical outcome, with HCL-V responding poorly to conventional HCL treatments. Recently, whole genomic sequencing has been used to identify the difference between HCL-C and HCL-V and mutation of BRAFV600E has been proved to be a molecular hallmark of HCL-C. However, BRAF inhibitors were not effective in all HCL-C cases and HCL-V seems be lack of the high-frequency mutations. Therefore, it is necessary to compare the genomic changes between HCL-C and HCL-V by high-resolution studies, especially in Chinese population, the genomic alterations of HCL have rarely be reported. Methods: In this study, the clinical features of a total of 18 Chinese HCL patients were described. Single nucleotide polymorphism (SNP) array analysis was performed to evaluate the genomic copy number alterations (CNA) and copy neutral loss of heterozygosity (CN-LOH) on six HCL-Vs with CD25-/BRAFV600E- and four HCL-Cs with CD25+/BRAFV600E+. Results: A total of 24 CNAs including seven chromosomal gains and 17 chromosomal losses, and 22 CN-LOHs were revealed. Five of the six cases of HCL-V showed 15 CNAs including four cryptic chromosomal gains and 11 chromosomal losses. Overlapping regions involving micro-deletion of chromosome 2q13 and large chromosomal loss of 14q were showed in HCL-V. In HCL-C, a total of nine CNAs were revealed in three of the four cases including three chromosomal gains and six chromosomal losses. No overlapping area was observed among the CNVs. 15 CN-LOHs were showed in five of the six cases of HCL-V and seven CN-LOHs was demonstrated in all of the four HCL-Cs. Conclusions: Comparing to Westerners, a relatively higher proportion of HCL-V in all HCL is observed in this study. CNAs and CN-LOHs were common in both HCL-V and HCL-C but the CNAs were different in them. HCL-C was characterized with the higher ratio of large chromosomal changes but lacked of recurrent CNAs, while HCL-V was presented with the higher incidence of cryptic CNAs and recurrent CNAs involving tumor-associated genes. It is necessary to further investigate the association of the genes, such as NPHP1 and TRAF3 genes, and HCL-V in the future study.


Subject(s)
DNA Copy Number Variations/genetics , Leukemia, Hairy Cell/genetics , Adult , Aged , Asian People , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Middle Aged , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies
10.
Front Oncol ; 10: 204, 2020.
Article in English | MEDLINE | ID: mdl-32175275

ABSTRACT

We report herein that Sprouty-Related EVH1 Domain-Containing Protein1 (SPRED1) is downregulated and a prognostic biomarker in adult acute myeloid leukemia (AML). We determined mRNA levels of SPRED1 in the bone marrow mononuclear cells from adult patients, including 113 AMLs and 22 acute lymphoblastic leukemias (ALLs), as well as in 37 healthy control subjects. Significantly decreased SPRED1 mRNA expression was found in AML patients comparing to those in ALL patients and healthy controls, which was confirmed by immunocytochemistry analysis of SPRED1 protein and ELISA measurement of serum SPRED1 level. Further analysis demonstrated that SPRED1 expression was significantly higher for most patients at complete remission after induction treatment than at diagnosis. Moreover, SPRED1 expression was significantly downregulated in M2 and M3 types. Non-acute promyelocytic leukemia (non-APL) patients with decreased SPRED1 had significantly lower 2-year progression-free survival and event-free survival rates. In vitro, ectopic overexpression of SPRED1 leads to a decrease of extracellular signal-regulated kinase (ERK) phosphorylation, induction of apoptosis and reduction of proliferation of THP-1 cells. Our findings suggest SPRED1 is not only a predictor of treatment response, but also an independent prognostic factor for non-APL, and targeting Ras- Mitogen-activated protein kinase (MAPK) signaling may be a promising strategy for the treatment of AML with downregulation of SPRED1.

11.
Fetal Pediatr Pathol ; 39(1): 51-61, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31215292

ABSTRACT

Introduction: Epithelioid sarcoma is a malignant mesenchymal tumor exhibiting epithelioid cytomorphology and epithelial phenotype. Its histogenesis is unknown, but its tumorigenesis may relate to inactivation of hSNF5/SMARCB1/INI1 tumor suppressor gene. This tumor typically affects young adults and older children, but it is uncommon in infants. Case Report: We describe a unique neoplasm in a 15-month-old infant presenting with a heel mass. The tumor was remarkable for retention of SMARCB1/INI1 expression. Conventional cytogenetic analysis revealed trisomy 2 and double minutes, and SNP array analysis confirmed the trisomy 2 and identified segmental amplification of chromosome 11 containing YAP1 and BIRC3; FISH testing proved that the double minutes consisted of BIRC3 and YAP1, potent oncogenes related to tumorigenesis of several types of tumors but not described in epithelioid sarcoma. Conclusion: Our findings expand the spectrum of cytogenetic alterations in this neoplasm, help in better understanding its tumorigenesis, and suggest potential therapeutic targets.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/genetics , Gene Expression Regulation, Neoplastic/genetics , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Child , DNA-Binding Proteins/metabolism , Humans , Male , SMARCB1 Protein/genetics , Sarcoma/diagnosis , Sarcoma/metabolism , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/metabolism , Transcription Factors/genetics , Trisomy/genetics , Young Adult
12.
Oncol Lett ; 18(6): 6725-6731, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807181

ABSTRACT

Translocation (9;11)(p21.3;q23.3) is one of the most common lysine methyltransferase 2A (KMT2A)-rearrangements in de novo and therapy-related acute myeloid leukemia (AML). Numerous in vitro and in vivo studies have demonstrated that the KMT2A/MLLT3 super elongation complex subunit (MLLT3) fusion gene on the derivative chromosome 11 serves a crucial role in leukemogenesis. Trisomy 9 as a secondary chromosome change in patients with t(9;11) is relatively rare. The present study reported a unique case of AML with a chromosome 9 trisomy secondary to t(9;11)(p21.3;q23.3) through the cytogenetic analysis of leukemic blood and bone marrow. Further characterization with fluorescence in situ hybridization and array comparative genomic hybridization analysis revealed that this extra chromosome 9 was either a copy of normal chromosome 9 or a derivative chromosome 9. Conversely with the previously reported favorable outcome of AML patients with t(9;11)(p21.3;q23.3), in the present study, the cells with only translocation persisted, whereas the cells with an extra chromosome 9 disappeared following initial chemotherapy. With this unique case, the present study hypothesized that the extra chromosome 9 could serve a crucial role in AML disease progression and contribute to cellular sensitivity to chemotherapy.

13.
BMC Cancer ; 19(1): 412, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31046733

ABSTRACT

BACKGROUND: The SK-PN-DW cell line was established in 1979 and is commercially available. Despite the use of this cell line as an in vitro model for functional and therapeutic studies of malignant primitive neuroectodermal tumor (PNET), there is a lack of complete information about the genetic alterations that are present at the cytogenetic level. Thus, the current study aimed to characterize the cytogenetic profile of this cell line. METHODS: Routine G-banded chromosome analysis, fluorescence in situ hybridization, and oligonucleotide array comparative genomic hybridization assays were performed to characterize the chromosomal changes in this cell line. RESULTS: The G-banded karyotype analysis showed that the number of chromosomes in this cell line ranged between 36 and 41. Importantly, all cells displayed a loss of chromosomes Y, 11, 13, and 18. However, some cells showed an additional loss of chromosome 10. Additionally, the observed structural changes indicated: a) unbalanced translocation between chromosomes 1 and 7; b) translocation between chromosomes 11 and 22 at breakpoints 11q24 and 22q12, which is a classical translocation that is associated with Ewing sarcoma; c) a derivative chromosome due to a whole arm translocation between chromosomes 16 and 17 at likely breakpoints 16p10 and 17q10; and d) possible rearrangement in the short arm of chromosome 18. Moreover, a variable number of double minutes were also observed in each metaphase cell. Furthermore, the microarray assay results not only demonstrated genomic-wide chromosomal imbalance in this cell line and precisely placed chromosomal breakpoints on unbalanced, rearranged chromosomes, but also revealed information about subtle chromosomal changes and the chromosomal origin of double minutes. Finally, the fluorescence in situ hybridization assay confirmed the findings of the routine cytogenetic analysis and microarrays. CONCLUSION: The accurate determination of the cytogenetic profile of the SK-PN-DW cell line is helpful in enabling the research community to utilize this cell line for future identity and comparability studies, in addition to demonstrating the utility of the complete cytogenetic profile, as a public resource.


Subject(s)
Brain Neoplasms/genetics , Cytogenetic Analysis/methods , Neuroectodermal Tumors, Primitive/genetics , Cell Line, Tumor , Chromosome Banding , Chromosome Deletion , Comparative Genomic Hybridization , Humans , In Situ Hybridization, Fluorescence , Karyotype , Translocation, Genetic
14.
Medicine (Baltimore) ; 97(21): e10874, 2018 May.
Article in English | MEDLINE | ID: mdl-29794792

ABSTRACT

RATIONALE: Three-way translocations occasionally occur in MLL-AFF1 fusion and other fusion gene. However, the complex chromosomal rearrangements in the study were the first report. PATIENT CONCERNS: We present novel cryptic and complex chromosomal rearrangements [der (21) t (9; 21) (p13; p11.2)] in an infant patient with relapsed acute lymphoblastic leukemia (ALL). DIAGNOSES: The diagnosis was based on morphologic, cytochemical, and immunophenotypic criteria proposed by the French-American-British Committee, and karyotype, fluorescence in situ hybridization, array comparative genomic hybridization. INTERVENTIONS: The patient was given chemotherapy with standard protocol for ALL. OUTCOMES: The patient had unfavorable prognostic outcome based on the cytogenetic and molecular cytogenetic markers. After short remission, the patient relapsed. LESSONS: MLL-AFF1, resulting from t(4;11)(q21;q23), is regarded as the hallmark of infant t(4;11) pre-B/mixed B-ALL. It is associated with a dismal prognosis and the multiple-way translocation involving chromosomes 4, 11 and 11 may function as an enhancer.


Subject(s)
DNA-Binding Proteins/genetics , In Situ Hybridization, Fluorescence/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptional Elongation Factors/genetics , Translocation, Genetic/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Comparative Genomic Hybridization/methods , Cytogenetic Analysis/methods , Gene Fusion , Histone-Lysine N-Methyltransferase/genetics , Humans , Immunophenotyping , Induction Chemotherapy/methods , Infant , Karyotyping , Male , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence
16.
Sci Rep ; 7(1): 10395, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871159

ABSTRACT

The variability of a small supernumerary marker chromosome (sSMC)-related phenotype is determined by the molecular component, the size, and shape of the marker chromosome. As fluorescence in situ hybridization has limitations regarding the resolution, efficiency, and accuracy. Recently, array comparative genomic hybridization (aCGH) was used for sSMC characterization. In this study, twenty cases with sSMCs were characterized by aCGH and FISH. Chromosomal origin of the marker chromosomes were successfully identified in seventeen of them. For the three cases with negative aCGH results, two of them were more likely due to that the sSMCs only contained centromere heterochromatin, whereas the reason for the remaining case with negative aCGH finding was uncertain. In order to establish a stronger genotype-phenotype correlation for clinical service in the future and avoid miss characterization, more sSMC cases were needed to be detailed characterized. This will help to clarify the variable clinical characteristics of sSMCs and provide additional information to aid clinical service and future research.


Subject(s)
Chromosome Aberrations , Chromosomes, Human/genetics , Comparative Genomic Hybridization/methods , In Situ Hybridization, Fluorescence/methods , Centromere/genetics , Chromosome Banding , Female , Humans , Karyotyping , Male
17.
Arthritis Rheumatol ; 69(11): 2187-2192, 2017 11.
Article in English | MEDLINE | ID: mdl-28692793

ABSTRACT

OBJECTIVE: Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. METHODS: We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. RESULTS: Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000-50,000 live female births, while partial triplications are even rarer. CONCLUSION: Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative.


Subject(s)
Chromosomes, Human, X/genetics , Lupus Erythematosus, Systemic/genetics , Mosaicism/statistics & numerical data , Sex Chromosome Aberrations/statistics & numerical data , Sjogren's Syndrome/genetics , Alleles , Bayes Theorem , Female , Gene Dosage , Humans , Karyotype , Lupus Erythematosus, Systemic/epidemiology , Polymorphism, Single Nucleotide , Sex Chromosome Disorders of Sex Development/epidemiology , Sex Chromosome Disorders of Sex Development/genetics , Sjogren's Syndrome/epidemiology , Trisomy/genetics , Turner Syndrome/epidemiology , Turner Syndrome/genetics
18.
Medicine (Baltimore) ; 96(51): e9169, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29390452

ABSTRACT

RATIONALE: With combination of multiple techniques, we have successfully characterized unique, complex chromosomal changes in a patient with chronic lymphocytic leukemia (CLL), a lymphoproliferative disorder. DIAGNOSES: The diagnosis was based on white blood cell, flow cytometry, and immunophenotypes and confirmed by karyotype, fluorescence in situ hybridization, and array comparative genomic hybridization from the patient's blood culture. INTERVENTIONS: The patient was given fludarabine, cyclophosphamide and rituximab (FCR) for 6 cycles. OUTCOMES: After completion of 6 cycles of FCR, the computed tomography scans of the neck/chest/abdomen/pelvic showed that the patient in CR. During the 10-month follow-up, the patient's clinical course remained uneventful. LESSONS: The translocation t(14;19) identified in this patient is a recurrent translocation found in patients with chronic B-cell lymphoproliferative disorders and the 3-way translocation involving chromosomes 2, 14, and 11 may play a role as an enhancer.


Subject(s)
Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 2 , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Translocation, Genetic , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/administration & dosage , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Rituximab/administration & dosage , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
19.
Clin Case Rep ; 4(10): 913-918, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27761238

ABSTRACT

We report a half-sibling cohort with deletion of 4p16.1, astigmatism, gross and fine motor delay, variable intellectual disability, and variable behavioral concerns. However, two siblings without the deletion also had learning delays and psychological concerns. Thus, variable phenotypic expression was seen and the significance of deletion of 4p16.1 remains unclear.

20.
Clin Immunol ; 168: 25-29, 2016 07.
Article in English | MEDLINE | ID: mdl-27109640

ABSTRACT

Primary Sjögren's syndrome (pSS) has a strong female bias. We evaluated an X chromosome dose effect by analyzing 47,XXY (Klinefelter's syndrome, 1 in 500 live male births) among subjects with pSS. 47,XXY was determined by examination of fluorescence intensity of single nucleotide polymorphisms from the X and Y chromosomes. Among 136 pSS men there were 4 with 47,XXY. This was significantly different from healthy controls (1 of 1254 had 47,XXY, p=0.0012 by Fisher's exact test) as well men with rheumatoid arthritis (0 of 363 with 47,XXY), but not different compared to men with systemic lupus erythematosus (SLE) (4 of 136 versus 8 of 306, Fisher's exact test p=NS). These results are consistent with the hypothesis that the number of X chromosomes is critical for the female bias of pSS, a property that may be shared with SLE but not RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Klinefelter Syndrome/genetics , Lupus Erythematosus, Systemic/genetics , Sjogren's Syndrome/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Female , Gene Frequency , Genotype , Humans , Male , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...