Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.313
Filter
1.
Mol Neurobiol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38823000

ABSTRACT

In this study, we aimed to work through the key genes involved in the process of pyroptosis in Alzheimer's disease (AD) to identify potential biomarkers using bioinformatics technology and further explore the underlying molecular mechanisms. The transcriptome data of brain tissue in AD patients were screened from the GEO database, and pyroptosis-related genes were analyzed. The functions of differential genes were analyzed by enrichment analysis and protein-protein interaction. The diagnostic model was established using LASSO and logistic regression analysis, and the correlation of clinical data was analyzed. Based on single-cell analysis of brain tissues of patients with AD, immunofluorescence and western blotting were used to explore the key cells affected by the hub gene. After GSEA, qRT-PCR, western blotting, LDH, ROS, and JC-1 were used to investigate the potential mechanism of the hub gene on pyroptosis. A total of 15 pyroptosis differentially expressed genes were identified. A prediction model consisting of six genes was established by LASSO and logistic regression analysis, and the area under the curve was up to 0.81. As a hub gene, CHMP4B was negatively correlated with the severity of AD. CHMP4B expression was decreased in the hippocampal tissue of patients with AD and mice. Single-cell analysis showed that CHMP4B was downregulated in AD microglia. Overexpression of CHMP4B reduced the release of LDH and ROS and restored mitochondrial membrane potential, thereby alleviating the inflammatory response during microglial pyroptosis. In summary, CHMP4B as a hub gene provides a new strategy for the diagnosis and treatment of AD.

2.
Chem Commun (Camb) ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845407

ABSTRACT

Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.

3.
Article in English | MEDLINE | ID: mdl-38835132

ABSTRACT

BACKGROUND: Guigan longmu decoction (GGLM), a traditional Chinese medicine compound, has demonstrated efficacy in treating rapid arrhythmia clinically. Nevertheless, its mechanism of action remains elusive. This study aims to elucidate the molecular mechanism underlying the efficacy of GGLM in treating arrhythmia utilizing non-targeted metabolomics, widely-targeted metabolomics, and network pharmacology, subsequently validated through animal experiments. METHODS: Initially, network pharmacology analysis and widely-targeted metabolomics were performed on GGLM. Subsequent to that, rats were administered GGLM intervention, and nontargeted metabolomics assays were utilized to identify metabolites in rat plasma postadministration. The primary signaling pathways, core targets, and key active ingredients of GGLM influencing arrhythmia were identified. Additionally, to validate the therapeutic efficacy of GGLM on arrhythmia rat models, a rat model of rapid arrhythmia was induced via subcutaneous injection of isoproterenol, and alterations in pertinent pathogenic pathways and proteins in the rat model were assessed through qRT-PCR and Western blot following GGLM administration. RESULTS: The results of network pharmacology showed that 99 active ingredients in GGLM acted on 249 targets and 201 signaling pathways, which may be key to treating arrhythmia. Widelytargeted metabolic quantification analysis detected a total of 448 active ingredients in GGLM, while non-targeted metabolomics identified 279 different metabolites and 10 major metabolic pathways in rats. A comprehensive analysis of the above results revealed that the core key active ingredients of GGLM in treating arrhythmia include calycosin, licochalcone B, glabridin, naringenin, medicarpin, formononetin, quercetin, isoliquiritigenin, and resveratrol. These active ingredients mainly act on the relevant molecules and proteins upstream and downstream of the MAPK pathway to delay the onset of arrhythmia. Animal experimental results showed that the heart rate of rats in the model group increased significantly, and the mRNA and protein expression of p38, MAPK, JNK, ERK, NF-kb, IL-1ß, and IL-12 in myocardial tissue also increased significantly. However, after intervention with GGLM, the heart rate of rats in the drug group decreased significantly, while the mRNA and protein expression of p38 MAPK, JNK, ERK1, NF-kb, IL-1ß, and IL-12 in myocardial tissue decreased significantly. CONCLUSION: GGLM, as an adjunctive therapy in traditional Chinese medicine, exhibits favorable therapeutic efficacy against arrhythmia. This can be attributed to the abundant presence of bioactive compounds in the formulation, including verminin, glycyrrhizin B, glabridine, naringenin, ononin, quercetin, isorhamnetin, and kaempferol. The metabolites derived from these active ingredients have the potential to mitigate myocardial inflammation and decelerate heart rate by modulating the expression of proteins associated with the MAPK signaling pathway in vivo.

4.
Mol Cell Endocrinol ; : 112292, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830447

ABSTRACT

RESEARCH QUESTION: Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN: Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS: In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS: YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.

5.
Fa Yi Xue Za Zhi ; 40(2): 186-191, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847035

ABSTRACT

OBJECTIVES: To explore the postmortem diffusion rule of Aconitum alkaloids and their metabolites in poisoned rabbits, and to provide a reference for identifying the antemortem poisoning or postmortem poisoning of Aconitum alkaloids. METHODS: Twenty-four rabbits were sacrificed by tracheal clamps. After 1 hour, the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration. Then, they were placed supine and stored at 25 ℃. The biological samples from 3 randomly selected rabbits were collected including heart blood, peripheral blood, urine, heart, liver, spleen, lung and kidney tissues at 0 h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h after intragastric administration, respectively. Aconitum alkaloids and their metabolites in the biological samples were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: At 4 h after intragastric administration, Aconitum alkaloids and their metabolites could be detected in heart blood, peripheral blood and major organs, and the contents of them changed dynamically with the preservation time. The contents of Aconitum alkaloids and their metabolites were higher in the spleen, liver and lung, especially in the spleen which was closer to the stomach. The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration. In contrast, the contents of Aconitum alkaloids and their metabolites in kidney were all lower. Aconitum alkaloids and their metabolites were not detected in urine. CONCLUSIONS: Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits, diffusing from high-content organs (stomach) to other major organs and tissues as well as the heart blood. The main mechanism is the dispersion along the concentration gradient, while urine is not affected by postmortem diffusion, which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.


Subject(s)
Aconitum , Alkaloids , Liver , Tandem Mass Spectrometry , Animals , Rabbits , Aconitum/chemistry , Alkaloids/metabolism , Alkaloids/urine , Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Liver/metabolism , Kidney/metabolism , Lung/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacokinetics , Aconitine/urine , Aconitine/metabolism , Aconitine/analysis , Plant Roots/chemistry , Tissue Distribution , Spleen/metabolism , Postmortem Changes , Forensic Toxicology/methods , Myocardium/metabolism , Time Factors , Male
6.
Angew Chem Int Ed Engl ; : e202404186, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691059

ABSTRACT

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94% ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

7.
Opt Lett ; 49(9): 2369-2372, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691721

ABSTRACT

Perfluorinated acrylate polymer materials exhibit low absorption loss at 1310 and 1550 nm, but molecular oxygen inhibits their photocuring. We propose a novel, to our knowledge, UV photolithography method incorporating a pre-exposure process for fabricating low-loss perfluorinated acrylate polymer waveguides. During the pre-exposure process, a partially cured thin layer forms on the core layer, effectively overcoming oxygen inhibition in subsequent lithography. Furthermore, the functional group contents of the polymerized materials were characterized by a Raman spectrometer to analyze the development reaction under the pre-exposure layer. Utilizing this improved method, we fabricated a straight waveguide with a length of 21 cm. The experiments showed that the propagation losses are 0.14 dB/cm at 1310 nm and 0.51 dB/cm at 1550 nm. The inter-channel cross talk for a core pitch of 250 µm was measured as low as -49 dB at 1310 nm. Error-free NRZ data transmission over this waveguide at 25 Gb/s was achieved, showcasing the potential in optical interconnect and communication applications.

8.
iScience ; 27(5): 109659, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706841

ABSTRACT

Abnormal mTORC1 activation by the lysosomal Ragulator complex has been implicated in cancer and glycolytic metabolism associated with drug resistance. Fasting upregulates RNF152 and mediates the metabolic status of cells. We report that RNF152 regulates mTORC1 signaling by targeting a Ragulator subunit, p18, and attenuates gemcitabine resistance in gallbladder cancer (GBC). We detected levels of RNF152 and p18 in tissues and undertook mechanistic studies using activators, inhibitors, and lentivirus transfections. RNF152 levels were significantly lower in GBC than in adjacent non-cancer tissues. Fasting impairs glycolysis, induces gemcitabine sensitivity, and upregulates RNF152 expression. RNF152 overexpression increases the sensitivity of GBC cells to gemcitabine, whereas silencing RNF152 has the opposite effect. Fasting-induced RNF152 ubiquitinates p18, resulting in proteasomal degradation. RNF152 deficiency increases the lysosomal localization of p18 and increases mTORC1 activity, to promote glycolysis and decrease gemcitabine sensitivity. RNF152 suppresses mTORC1 activity to inhibit glycolysis and enhance gemcitabine sensitivity in GBC.

9.
BMJ Open ; 14(5): e083888, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821572

ABSTRACT

INTRODUCTION: Prolonged disorders of consciousness (pDoC) are a catastrophic condition following brain injury with few therapeutic options. Transcutaneous auricular vagal nerve stimulation (taVNS), a safe, non-invasive intervention modulating thalamo-cortical connectivity and brain function, is a possible treatment option of pDoC. We developed a protocol for a randomised controlled study to evaluate the effectiveness of taVNS on consciousness recovery in patients with pDoC (TAVREC). METHODS AND ANALYSIS: The TAVREC programme is a multicentre, triple-blind, randomised controlled trial with 4 weeks intervention followed by 4 weeks follow-up period. A minimum number of 116 eligible pDoC patients will be recruited and randomly receive either: (1) conventional therapy plus taVNS (30 s monophasic square current of pulse width 300 µs, frequency of 25 Hz and intensity of 1 mA followed by 30 s rest, 60 min, two times per day, for 4 weeks); or (2) conventional therapy plus taVNS placebo. Primary outcome of TAVREC is the rate of improved consciousness level based on the Coma Recovery Scale-Revised (CRS-R) at week 4. Secondary outcomes are CRS-R total and subscale scores, Glasgow Coma Scale score, Full Outline of UnResponsiveness score, ECG parameters, brainstem auditory evoked potential, upper somatosensory evoked potential, neuroimaging parameters from positron emission tomography/functional MRI, serum biomarkers associated with consciousness level and adverse events. ETHICS AND DISSEMINATION: This study was reviewed and approved by the Research Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (Reference number: 2023-SR-392). Findings will be disseminated in a peer-reviewed journal and presented at relevant conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300073950.


Subject(s)
Consciousness Disorders , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Consciousness Disorders/therapy , Consciousness Disorders/physiopathology , China , Transcutaneous Electric Nerve Stimulation/methods , Consciousness , Randomized Controlled Trials as Topic , Adult , Multicenter Studies as Topic , Recovery of Function , Female , Treatment Outcome , Male
10.
Chem Sci ; 15(19): 7285-7292, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756801

ABSTRACT

Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.

11.
J Ethnopharmacol ; 332: 118320, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740107

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY: The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS: The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 µg/g, 1.89-2.16 µg/g, and 0.55-1.60 µg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS: The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.

12.
Front Pharmacol ; 15: 1389271, 2024.
Article in English | MEDLINE | ID: mdl-38783953

ABSTRACT

Aims: The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods: Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results: The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion: The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.

13.
Int J Antimicrob Agents ; : 107220, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810939

ABSTRACT

Phage therapy offers a promising approach to combat the growing threat of antimicrobial resistance. Yet, key questions remain regarding dosage, administration routes, combination therapy, and the causes of therapeutic failure. In this study, we focused on a novel lytic phage, ФAb4B, which specifically targeted the A. baumannii strains with KL160 CPS, including the pan-drug resistant A. baumannii YQ4. ФAb4B exhibited the ability to effectively inhibit biofilm formation and eradicate mature biofilms independently of dosage. Additionally, it demonstrated a wide spectrum of antibiotic-phage synergy and did not show any cytotoxic or hemolytic effects. Continuous phage injections, both intraperitoneally and intravenously over 7 days, showed no acute toxicity in vivo. Importantly, phage therapy significantly improved neutrophil counts, outperforming ciprofloxacin (CIP). However, excessive phage injections suppressed neutrophil levels. The combinatorial treatment of phage-CIP rescued 91% of the mice, a superior outcome compared to phage alone (67%). The efficacy of the combinatorial treatment was independent of phage dosage. Notably, prophylactic administration of the combinatorial regimen provided no protection, but even when combined with a delayed therapeutic regimen, it saved all the mice. Bacterial resistance to the phage was not a contributing factor to treatment failure. Our preclinical study systematically describes the lytic phage's effectiveness in both in vitro and in vivo settings, filling in crucial details about phage treatment against bacteriemia caused by A. baumannii, which will provide a robust foundation for the future of phage therapy.

14.
BMC Complement Med Ther ; 24(1): 207, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807130

ABSTRACT

Traditional Chinese medicine (TCM), AYURVEDA and Indian medicine are essential in disease prevention and treatment. Kelisha capsule (KLSC), a TCM formula listed in the Chinese Pharmacopoeia, has been clinically proven to possess potent antibacterial properties. However, the precise antimicrobial mechanism of KLSC remained unknown. This study aimed to elucidate the dual antibacterial mechanism of KLSC using network pharmacology, molecular docking, and experimental validation. By analyzing the growth curve of Escherichia coli (E. coli), it was observed that KLSC significantly inhibited its growth, showcasing a remarkable antibacterial effect. Furthermore, SEM and TEM analysis revealed that KLSC damaged the cell wall and membrane of E. coli, resulting in cytoplasmic leakage, bacterial death, and the exertion of antibacterial effects. The network pharmacology analysis revealed that KLSC exhibited an effect on E. coli ATP synthase, thereby influencing the energy metabolism process. The molecular docking outcomes provided evidence that the active compounds of KLSC could effectively bind to the ATP synthase subunit. Subsequently, experimental findings substantiated that KLSC effectively suppressed the activity of ATP synthase in E. coli and consequently decreased the ATP content. This study highlighted the dual antibacterial mechanism of KLSC, emphasizing its effects on cell structure and energy metabolism, suggesting its potential as a natural antibacterial agent for E. coli-related infections. These findings offered new insights into exploring the antibacterial mechanisms of TCM by focusing on the energy metabolism process.


Subject(s)
Anti-Bacterial Agents , Drugs, Chinese Herbal , Escherichia coli , Molecular Docking Simulation , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Microbial Sensitivity Tests
15.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731930

ABSTRACT

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Subject(s)
Gene Expression Regulation, Plant , Manihot , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism
16.
ACS Appl Mater Interfaces ; 16(20): 25843-25855, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717308

ABSTRACT

Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.


Subject(s)
Calcium Phosphates , Nanofibers , Silicon Dioxide , Tissue Scaffolds , Wound Healing , Nanofibers/chemistry , Animals , Rabbits , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Skin/drug effects , Regeneration/drug effects , Mice , Gels/chemistry
17.
World J Hepatol ; 16(5): 809-821, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818287

ABSTRACT

BACKGROUND: Acute-on-chronic liver disease (AoCLD) accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases. AIM: To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD. METHODS: Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure (ACLF) study cohort were included in this study. The clinical characteristics and outcomes, and the 90-d survival rate associated with each clinical type of AoCLD were analyzed, using the Kaplan-Meier method and the log-rank test. RESULTS: A total of 3375 patients with AoCLD were enrolled, including 1679 (49.7%) patients with liver cirrhosis acute decompensation (LC-AD), 850 (25.2%) patients with ACLF, 577 (17.1%) patients with chronic hepatitis acute exacerbation (CHAE), and 269 (8.0%) patients with liver cirrhosis active phase (LC-A). The most common cause of chronic liver disease (CLD) was HBV infection (71.4%). The most common precipitants of AoCLD was bacterial infection (22.8%). The 90-d mortality rates of each clinical subtype of AoCLD were 43.4% (232/535) for type-C ACLF, 36.0% (36/100) for type-B ACLF, 27.0% (58/215) for type-A ACLF, 9.0% (151/1679) for LC-AD, 3.0% (8/269) for LC-A, and 1.2% (7/577) for CHAE. CONCLUSION: HBV infection is the main cause of CLD, and bacterial infection is the main precipitant of AoCLD. The most common clinical type of AoCLD is LC-AD. Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF.

18.
Water Res ; 259: 121814, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38820730

ABSTRACT

Microfibers, a prevalent form of microplastics, undergo diverse environmental interactions resulting in varied morphological changes. These changes can offer insights into their environmental trajectories. Despite its importance, comprehensive studies on microfiber morphology are scarce. This study collected 233 microfibers from the East China Sea and South China Sea. Based on morphological features observed in microscopic images of microfibers, such as curvature, cross-sectional shapes, diameter variations, and crack shapes, we identified a general morphological pattern, classifying the environmental microfibers into three distinct morphological types. Our findings highlight noticeable differences in morphological metrics (e.g., length, diameter, and surface roughness) across three types, especially the diameter. Microfibers of Type I had an average diameter of 19.45 ± 4.93 µm, significantly smaller than Type II (263.00 ± 75.15 µm) and Type III (299.68 ± 85.62 µm). Within the three-dimensional (3D) space fully defined by these quantitative parameters, the clustering results of microfibers are also consistent with the proposed morphology pattern, with each category showing a potential correlation with specific chemical compositions. Type I microfibers correspond to synthetic cellulose, while 94.79 % of Types II and III are composed of polymers. Notably, we also validated the great applicability of the morphology categories to microfibers in diverse environmental compartments, including water and sediments in nearshore and offshore areas. This classification aids in the efficient determination of microfiber sources and the assessment of their ecological risks, marking a significant advancement in microfiber environmental studies.

19.
Langmuir ; 40(21): 11067-11077, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739539

ABSTRACT

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

20.
Chem Commun (Camb) ; 60(44): 5735-5738, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742637

ABSTRACT

Electroreductive ring-opening carboxylation of styrene carbonates with CO2 to achieve dicarboxylic acids and/or ß-hydroxy acids has been developed via the selective cleavage of the C(sp3)-O bond in cyclic carbonates. The product selectivity is probably determined by the stability and reactivity of the key benzylic radical and carbanion intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...