Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Se Pu ; 41(6): 457-471, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37259870

ABSTRACT

Sample pretreatment technology plays a vital role in the analysis of complex samples and is key to the entire analytical process. Its main purpose is to separate the substance to be measured from the sample matrix or interfering substances in the sample and to achieve a state in which the instrument can be analyzed and detected. Traditional sample pretreatment techniques include liquid-liquid extraction, liquid-solid extraction, precipitation separation, solvent volatilization-rotary evaporation, filtration, and centrifugation. However, the applications of these methods are limited by their low extraction efficiency, complicated operation, long time consumption, unstable recovery, use of large amounts of organic solvents, and large error rates. Several new sample pretreatment techniques, including solid-phase extraction, magnetic solid-phase extraction, solid-phase microextraction, and dispersive solid-phase extraction, have been developed and rapidly applied to various fields to overcome the shortcomings of traditional sample pretreatment methods. However, the development of adsorbent materials with high selectivity and enrichment capability remains a challenge in sample pretreatment technology, in which adsorbents with excellent adsorption performance are crucial. In recent years, various nanomaterials with remarkable properties have been introduced and applied to sample pretreatment, and numerous nano-extraction materials with diverse functions and high selectivity and enrichment capability have been developed. Hollow nanomaterials are nanoparticles with large voids in their solid shells. Owing to their advantageous properties, which include a large effective surface area, abundant internal space, low density, variety of preparation methods, structural and functional tailorability, short mass transmission path, and high carrying capacity, hollow nanomaterials show great application potential in sample pretreatment. The extraction mechanism of these materials is based on the synergistic effects of π-π stacking, electrostatic, hydrogen-bonding, and hydrophobic interactions to achieve the efficient separation and enrichment of the target analytes. Given their noteworthy physicochemical properties, hollow nanomaterials have gained wide attention in various research fields and are considered a research frontier in the field of materials science. Changing the structure or surface properties of the core and shell can lead to various hollow nanomaterials with unique properties. Such changes can create synergy between the physicochemical properties and structural function of the original core-shell material, leading to novel materials with superior performance compared with the starting materials and broad application prospects in sample pretreatment. Nevertheless, only a few hollow nanomaterials with diverse structures and functions are currently used for sample pretreatment, and their adsorption capacity for target analytes is often unsatisfactory. Consequently, enhancing the adsorption selectivity of these materials toward various analytes is the most important step in sample pretreatment. First, hollow nanomaterials with a large specific surface area and suitable pore size can be designed to achieve the specific adsorption of target analytes of varying sizes. The combination of hollow nanomaterials with other materials presenting desirable adsorption properties could also lead to synergistic effects and enhance the performance of composite hollow nanomaterials. In addition, more green methods to prepare hollow nanomaterials with outstanding selectivity can be explored to achieve the superior adsorption of a specific target analyte. Efforts to synthesize hollow nanomaterials have been met with great success, but the available synthesis methods still suffer from complicated steps, high costs, relatively harsh conditions, and the use of highly toxic substances. This paper summarizes the main types of hollow nanomaterials, their synthesis methods, and research progress on sample pretreatment technologies (solid-phase extraction, solid-phase microextraction, magnetic solid-phase extraction, and dispersive solid-phase extraction) and describes the challenges encountered in the synthesis of hollow nanomaterials. The applications and developments of hollow nanomaterials in sample pretreatment are also discussed.

2.
RSC Adv ; 9(41): 23711-23717, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530617

ABSTRACT

Development of novel porous materials for efficient adsorption and removal of environmental pollutants from aqueous solution is of great importance and interest in environmental science and chemistry. Herein, we reported a facile synthesis of recyclable magnetic carbonaceous porous composite derived from iron-based metal-organic framework MIL-100(Fe) for superior adsorption and removal of malachite green (MG) from aqueous solution. Because of large surface area and high porosity, the synthesized magnetic carbonaceous porous material presented a superior adsorption capacity of 2090 mg g-1 for MG. The adsorption of MG on magnetic carbonaceous porous composite is endothermic and spontaneous. The prepared magnetic carbonaceous porous composite could be separated easily and rapidly from the solution matrix by an external magnet. The rapid adsorption, large adsorption capacity and good reusability make it attractive for practical use in the adsorption and removal of dyes from aqueous solutions.

3.
ChemSusChem ; 10(13): 2796-2804, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28570775

ABSTRACT

Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe2 O3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm-2 ), a maximal photocurrent of 1.0 mA cm-2 is achieved with ZnO/Fe2 O3 core-shell NWs and 2.3 mA cm-2 was achieved for the PH3 -treated NWs at 1.23 V versus RHE. The PH3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe2 PO5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material.


Subject(s)
Iron Compounds/chemistry , Nanowires/chemistry , Phosphates/chemistry , Photochemical Processes , Water/chemistry , Zinc Oxide/chemistry , Capsules , Catalysis , Electrochemistry , Oxidation-Reduction , Temperature
4.
Phys Chem Chem Phys ; 19(6): 4507-4515, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28120968

ABSTRACT

Graphitic carbon nitride (g-C3N4) has been widely studied as a metal-free photocatalyst, leading to some excellent results; however, the rapid recombination of photogenerated charge carriers substantially limits its performance. Here, we establish two types of g-C3N4-based heterojunction (type II and nonmediator assisted Z-scheme) photoanodes on a transparent conducting substrate via coupling with rod-like and nanoparticulate WO3, respectively. In these composites, g-C3N4 film grown by electrophoretic deposition of exfoliated g-C3N4 serves as the host or guest material. The optimized type II WO3/g-C3N4 composite exhibits an enhanced photocurrent of 0.82 mA cm-2 at 1.23 V vs. RHE and an incident photo-to-current conversion efficiency (IPCE) of 33% as compared with pure WO3 nanorods (0.22 mA cm-2 for photocurrent and 15% for IPCE). Relative to pure g-C3N4 film (with a photocurrent of several microampere and an IPCE of 2%), a largely improved photocurrent of 0.22 mA cm-2 and an IPCE of 20% were acquired for the Z-scheme g-C3N4/WO3 composite. The enhancement can be attributed to accelerated charge separation in the heterointerface because of the suitably aligned band gap between WO3 and g-C3N4, as confirmed by optical spectroscopy and ultraviolet photoelectron spectroscopy (UPS) analysis. The photocatalytic process and mechanism of the g-C3N4-based heterojunctions are proposed herein, which potentially explain the origin of the enhanced photoelectrochemical performance. This achievement and the fundamental information supplied here indicate the importance of rationally designing heterojunction photoelectrodes to improve the performance of semiconductors. This is particularly important for materials such as pure g-C3N4 and WO3, as their photoactivities are strongly restricted by high recombination rates.

5.
Dalton Trans ; 45(41): 16221-16230, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27711735

ABSTRACT

To overcome tough conditions currently used for the preparation of nanostructured hematite films on a conducting substrate, a rational and easy method of chemical etching involving Fe3+ release and material growth in the presence of OH- has been developed. By carefully tuning the parameters influencing the morphologies of hematite, including the synthetic procedure, the concentration of etching solution, temperature, etching time and the morphology controlling surfactant, hematite films grown on iron foil with various morphologies (e.g. nanorod, nanowire, ultrathin nanoflake and cauliflower-like shape) have been achieved. In particular, it is found that F- is an effective surfactant to control the morphology as well as the crystallization process of hematite. Ultrathin nanoflakes having a minimized feature size exhibit the best photocurrent of 0.5 mA cm-2 (1.23 V vs. RHE, RHE is reversible hydrogen electrode) among the samples tested as a result of facilitated hole diffusion to the electrolyte and thus lowered carrier recombination. Compared with pristine hematite, a nearly tripled photocurrent is observed when H2O2 is added in the electrolyte as a hole scavenger, suggesting the presence of a charge injection barrier in the surface of samples. According to this, the strategy of Co2+ treatment is utilized and the improved photocurrent is seen, likely due to the improved water oxidation kinetics and surface state passivation. We believe that this convenient and economical method can be extended to the synthesis of other alkaline metal oxide nanomaterials as long as the redox potential of S2O82-/SO42- is higher than Mn+/M (M refers to metal).

6.
Biosens Bioelectron ; 58: 85-91, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24632133

ABSTRACT

In this study, an electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles (Pt-Pd NPs) supported by reduced graphene oxide (rGO) nanosheets-multiwalled carbon nanotube (CNTs) nanocomposite (marked as Pt-Pd NPs/CNTs-rGO) was investigated for the first time. This hybrid nanocomposite has been prepared via a facile and versatile hydrothermal synthetic strategy while its structure and property are evaluated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The result shows that 3D porous Pt-Pd NPs/CNTs-rGO nanocomposite has a large specific surface area of 326.6m(2)g(-1) and exhibited ultrahigh rate capability and good cycling properties at high rates. Electrochemical studies have been performed for the nitro aromatic compounds detection by using different pulse voltammetry (DPV) techniques. The proposed nanocomposite exhibited much enhanced elctrocatalytic activity and high sensitivity toward the detection of nitro aromatic compounds which compared with Pt-Pd NPs dispersed on functionalized rGO, Pt-Pd NPs dispersed on functionalized CNTs, rGO-CNTs and bare glass carbon electrode (GCE). On the basis of the above synergetic electrochemical sensing and synthesis procedure, the hybrid material can be recommended as a robust material for sensor-related applications. Moreover, the proposed sensor exhibits high reproducibility, long-time storage stability and satisfactory anti-interference ability.


Subject(s)
Conductometry/instrumentation , Graphite/chemistry , Hydrocarbons, Aromatic/analysis , Nanotubes, Carbon/chemistry , Nitro Compounds/analysis , Palladium/chemistry , Platinum/chemistry , Equipment Design , Equipment Failure Analysis , Hydrocarbons, Aromatic/chemistry , Metal Nanoparticles/chemistry , Microelectrodes , Molecular Conformation , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanopores/ultrastructure , Nanotubes, Carbon/ultrastructure , Nitro Compounds/chemistry , Porosity
7.
Talanta ; 110: 15-20, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23618169

ABSTRACT

In this paper, coenzyme Q10 (Ubiquinone, CoQ10) was used for the first time as a transducer to construct electrochemical biosensor for effectively detecting γ-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH). CoQ10 modified electrode was fabricated by attaching its gel mixed with multi-walled carbon nanotubes (MWNTs)/ionic liquid (IL). In the optimum conditions, based on the increasing of reduction peak current of CoQ10 caused by GSH through voltammetric technology, it was found that the peak current of CoQ10 was linear with the concentration of GSH in the range from 4.0×10(-9) to 2.0×10(-7)mol L(-1) at the pH 7.00, and the limit of detection was 3.2×10(-10)mol L(-1) (S/N=3). The results revealed that this method could be used to determine GSH in actual blood samples with the superiority of excellent selectivity, high stability and sensitivity. The strategy explored here might provide a new pathway to design novel multi-function transducers for detecting GSH, which has unique characteristic and potential application in the fields of sensor and medical diagnosis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques/instrumentation , Glutathione/analysis , Ubiquinone/chemistry , Humans , Limit of Detection
8.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o216, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424497

ABSTRACT

The title compound, C(28)H(38)Br(2)N(2), is centrosymmetric with the mid-point of the central C-C bond of the butyl group located on an inversion center. The terminal benzene ring is approximately perpendicular to the central 1,4-diaza-butadiene mean plane [dihedral angle = 78.23 (3)°]. No hydrogen bonding or aromatic stacking is observed in the crystal structure.

9.
Molecules ; 18(2): 1653-9, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23358323

ABSTRACT

An efficient and direct protocol for the preparation of amidoalkylnaphthols employing a multi-component, one-pot condensation reaction of 2-naphthol, aromatic aldehydes and acetamide or benzamide in the presence of graphite supported perchloric acid under solvent-free conditions is described. The thermal solvent-free procedure offers advantages such as simple work-up, shorter reaction times and higher product yields, and the catalyst exhibited remarkable reactivity and can be recycled.


Subject(s)
Chemistry, Organic/methods , Graphite/chemistry , Naphthols/chemical synthesis , Perchlorates/chemistry , Recycling , Catalysis , Naphthols/chemistry
10.
J Sep Sci ; 33(20): 3239-44, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20839236

ABSTRACT

A novel mesoporous-coated stainless steel wire microextraction coupled with the HPLC procedure for quantification of four polycyclic aromatic hydrocarbons in water has been developed, based on the sorption of target analytes on a selectively adsorptive fiber and subsequent desorption of analytes directly into HPLC. Phenyl-functionalized mesoporous materials (Ph-SBA-15) were synthesized and coated on the surfaces of a stainless steel wire. Due to the high porosity and large surface area of the Ph-SBA-15, high extraction efficiency is expected. The influence of various parameters on polycyclic aromatic hydrocarbons extraction efficiency were thoroughly studied and optimized (such as the extraction temperature, the extraction time, the desorption time, the stirring rate and the ionic strength of samples). The results showed that each compound for the analysis of real water samples was tested under optimal conditions with the linearity ranging from 1.02×10(-3) to 200 µg/ L and the detection limits were found from 0.32 to 2.44 ng/ L, respectively. The RSD of the new method was smaller than 4.10%.


Subject(s)
Chromatography, High Pressure Liquid , Polycyclic Aromatic Hydrocarbons/analysis , Stainless Steel/chemistry , Water/chemistry , Chromatography, High Pressure Liquid/economics , Time Factors
11.
Anal Biochem ; 390(1): 68-73, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19364489

ABSTRACT

Being the largest family of cell surface receptors, G-protein-coupled receptors (GPCRs) are among the most frequent targets. The functions of many GPCRs are unknown, and it is both time-consuming and expensive to determine their ligands and signaling pathways by experimental methods. It is of great practical significance to develop an automated and reliable method for classification of GPCRs. In this study, a novel method based on the concept of Chou's pseudo amino acid composition has been developed for predicting and recognizing GPCRs. The discrete wavelet transform was used to extract feature vectors from the hydrophobicity scales of amino acid to construct pseudo amino acid (PseAA) composition for training support vector machine. The prediction accuracies by the current method among the major families of GPCRs, subfamilies of class A, and types of amine receptors were 99.72%, 97.64%, and 99.20%, respectively, showing 9.4% to 18.0% improvement over other existing methods and indicating that the proposed method is a useful automated tool in identifying GPCRs.


Subject(s)
Amino Acids/chemistry , Receptors, G-Protein-Coupled/classification , Algorithms , Artificial Intelligence , Hydrophobic and Hydrophilic Interactions , Receptors, G-Protein-Coupled/chemistry
12.
Pest Manag Sci ; 64(5): 556-64, 2008 May.
Article in English | MEDLINE | ID: mdl-18080290

ABSTRACT

BACKGROUND: The high herbicidal activities of [1,2,4]triazolo[1,5-c]pyrimidine and 2H-1,2,4-thiadiazolo[2,3-a]pyrimidine derivatives suggested the development of new fused heterocyclic compounds for application as herbicides. RESULTS: Three series of pyrimidinyl-substituted thioureas (4) and amides (5, 6) were synthesized, and the typical crystal structure of a 2H-1,2,4-thiadiazolo[2,3-a]pyrimidine derivative (5a) was determined by X-ray diffraction. All the compounds were tested for herbicidal activity against selected weeds. CONCLUSION: The series of fused heterocyclic amides 5a to 5d exhibited high herbicidal activities both against monocotyledonous weeds (Echinochloa crus-galli L., Sorghum bicolor (L.) Mönch., Digitaria sanguinalis (L.) Scop) and against dicotyledonous weeds (Amaranthus retroflexus L. and Brassica campestris L.) in pre-emergence treatments. In particular, compound 5b at low concentration still showed high inhibitory activity against A. retroflexus in pre-emergence treatment. Different substituents at the meta positions of the pyrimidine ring were found to affect the herbicidal activity.


Subject(s)
Amides/chemical synthesis , Herbicides/chemical synthesis , Pyrimidines/chemistry , Thiourea/chemistry , Amides/chemistry , Herbicides/chemistry , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...