Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
PeerJ ; 12: e17438, 2024.
Article in English | MEDLINE | ID: mdl-38818455

ABSTRACT

Background: The identification and analysis of allelic variation are important bases for crop diversity research, trait domestication and molecular marker development. Grain tannin content is a very important quality trait in sorghum. Higher tannin levels in sorghum grains are usually required when breeding varieties resistant to bird damage or those used for brewing liquor. Non-tannin-producing or low-tannin-producing sorghum accessions are commonly used for food and forage. Tan1 and Tan2, two important cloned genes, regulate tannin biosynthesis in sorghum, and mutations in one or two genes will result in low or no tannin content in sorghum grains. Even if sorghum accessions contain dominant Tan1 and Tan2, the tannin contents are distributed from low to high, and there must be other new alleles of the known regulatory genes or new unknown genes contributing to tannin production. Methods: The two parents 8R306 and 8R191 did not have any known recessive alleles for Tan1 and Tan2, and it was speculated that they probably both had dominant Tan1 and Tan2 genotypes. However, the phenotypes of two parents were different; 8R306 had tannins and 8R191 had non-tannins in the grains, so these two parents were constructed as a RIL population. Bulked segregant analysis (BSA) was used to determine other new alleles of Tan1 and Tan2 or new Tannin locus. Tan1 and Tan2 full-length sequences and tannin contents were detected in wild sorghum resources, landraces and cultivars. Results: We identified two novel recessive tan1-d and tan1-e alleles and four recessive Tan2 alleles, named as tan2-d, tan2-e, tan2-f, and tan2-g. These recessive alleles led to loss of function of Tan1 and Tan2, and low or no tannin content in sorghum grains. The loss-of-function alleles of tan1-e and tan2-e were only found in Chinese landraces, and other alleles were found in landraces and cultivars grown all around the world. tan1-a and tan1-b were detected in foreign landraces, Chinese cultivars and foreign cultivars, but not in Chinese landraces. Conclusion: These results implied that Tan1 and Tan2 recessive alleles had different geographically distribution in the worldwide, but not all recessive alleles had been used in breeding. The discovery of these new alleles provided new germplasm resources for breeding sorghum cultivars for food and feed, and for developing molecular markers for low-tannin or non-tannin cultivar-assisted breeding in sorghum.


Subject(s)
Alleles , Sorghum , Tannins , Sorghum/genetics , Sorghum/metabolism , Tannins/metabolism , Tannins/analysis , Genes, Recessive/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype
3.
Environ Sci Pollut Res Int ; 31(25): 37496-37519, 2024 May.
Article in English | MEDLINE | ID: mdl-38777974

ABSTRACT

The water retention curve (WRC) of municipal solid waste (MSW) is the important hydraulic parameter for the study of unsaturated seepage analysis in landfills. Due to the compressibility and degradability of the waste, the search for a method to quickly and accurately test its water retention curve (WRC) is a current problem that needs to be solved. In this paper, considering the volume change of the waste specimens in test, the test principle of centrifuge testing of WRC is corrected to make it applicable to the testing of waste WRC. In addition, the WRCs of 20 MSW specimens with typical landfill compositions and porosities are measured using the corrected centrifuge test. The effects of compositions and porosities of waste specimens on WRC parameters were analyzed. The results are summarized as follows. Disregarding the height reduction of specimens resulted in overestimated matric suction values and underestimating volume water content values. By comparing uncorrected and corrected values, the maximum difference of the matric suction and volumetric water content reach 233 kPa and 11%, respectively. This study can provide a reference for accurately measuring the WRC of MSW using a centrifuge. For the waste specimen without kitchen and yard waste, composition had less of an effect on the WRC of waste compared to porosity. The effect of the content of the non-absorbable fraction on the residual volumetric water content θr and the parameter nv in the van Genuchten model was significant. The initial porosity n had a great effect on the parameter α.


Subject(s)
Centrifugation , Refuse Disposal , Solid Waste , Water , Water/chemistry , Waste Disposal Facilities , Porosity
4.
Genes (Basel) ; 14(10)2023 10 22.
Article in English | MEDLINE | ID: mdl-37895323

ABSTRACT

To investigate the cold response mechanism and low temperature regulation of flowering in tulips, this study identified 32 MADS-box transcription factor family members in tulips based on full-length transcriptome sequencing, named TgMADS1-TgMADS32. Phylogenetic analysis revealed that these genes can be divided into two classes: type I and type II. Structural analysis showed that TgMADS genes from different subfamilies have a similar distribution of conserved motifs. Quantitative real-time PCR results demonstrated that some TgMADS genes (e.g., TgMADS3, TgMADS15, TgMADS16, and TgMADS19) were significantly upregulated in buds and stems under cold conditions, implying their potential involvement in the cold response of tulips. In summary, this study systematically identified MADS family members in tulips and elucidated their evolutionary relationships, gene structures, and cold-responsive expression patterns, laying the foundation for further elucidating the roles of these transcription factors in flowering and the cold adaptability of tulips.


Subject(s)
Tulipa , Tulipa/genetics , Tulipa/metabolism , Phylogeny , MADS Domain Proteins/metabolism , Genome, Plant , Transcription Factors/genetics
5.
Sensors (Basel) ; 23(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37430620

ABSTRACT

As a basic task and key link of space situational awareness, space target recognition has become crucial in threat analysis, communication reconnaissance and electronic countermeasures. Using the fingerprint features carried by the electromagnetic signal to recognize is an effective method. Because traditional radiation source recognition technologies are difficult to obtain satisfactory expert features, automatic feature extraction methods based on deep learning have become popular. Although many deep learning schemes have been proposed, most of them are only used to solve the inter-class separable problem and ignore the intra-class compactness. In addition, the openness of the real space may invalidate the existing closed-set recognition methods. In order to solve the above problems, inspired by the application of prototype learning in image recognition, we propose a novel method for recognizing space radiation sources based on a multi-scale residual prototype learning network (MSRPLNet). The method can be used for both the closed- and open-set recognition of space radiation sources. Furthermore, we also design a joint decision algorithm for an open-set recognition task to identify unknown radiation sources. To verify the effectiveness and reliability of the proposed method, we built a set of satellite signal observation and receiving systems in a real external environment and collected eight Iridium signals. The experimental results show that the accuracy of our proposed method can reach 98.34% and 91.04% for the closed- and open-set recognition of eight Iridium targets, respectively. Compared to similar research works, our method has obvious advantages.

6.
Plant Sci ; 327: 111556, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481362

ABSTRACT

Sorghum is one of the five most productive crops worldwide, but its yield is seriously limited by phosphate (Pi) availability. Although inorganic Pi signalling is well studied in Arabidopsis and rice, it remains largely unknown in sorghum. The sorghum sbpho2 mutant was identified, showing leaf necrosis and short roots. Map-based cloning identified SbPHO2 as Sobic.009G228100, an E2 conjugase gene that is a putative orthologue of the PHO2 genes in rice and Arabidopsis, which play important roles in Pi signalling. Pi starvation experiments and transformation of SbPHO2 into the rice ospho2 mutant further revealed that SbPHO2 is likely involved in Pi accumulation and root architecture alteration in sorghum. qRTPCR results showed that SbPHO2 was expressed in almost the entire plant, especially in the leaves. Furthermore, some typical Pi starvation-induced genes were induced in sbpho2 even under Pi-sufficient conditions, including Pi transporters, SPXs, phosphatases and lipid composition alteration-related genes. In addition to P accumulation in the shoots of sbpho2, concentrations of N, K, and other metal elements were also altered significantly in the sbpho2 plants. Nitrate uptake was also suppressed in the sbpho2 mutant. Consistent with this finding, the expression of several nitrate-, potassium- and other metal element-related genes was also altered in sbpho2. Furthermore, the results indicated that N-dependent control of the P starvation response is regulated via SbPHO2 in sorghum. Our results suggest that SbPHO2 participates in the regulation of the absorption of multiple nutrients, although PHO2 is a crucial and conserved component of Pi starvation signalling.


Subject(s)
Sorghum , Biological Transport , Gene Expression Regulation, Plant , Nitrates/metabolism , Phosphates/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants/metabolism , Sorghum/genetics , Sorghum/metabolism , Plant Proteins
7.
Materials (Basel) ; 15(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36143526

ABSTRACT

Freeze-thaw cycles (FTCs) and steel bar corrosion (SBC) are the most common service conditions of hydraulic concrete and have significant impacts on its durability. Using pullout and microscopic tests of different FTC and SBC rates, we selected the mass loss rate, ultrasonic velocity, bond strength and bond slip in order to describe the changes in the macro-properties, and also selected the porosity and pore size distribution as micro-parameters in order to explore the influence of FTCs and SBC on the mechanical properties of hydraulic concrete. The results showed that the bond strength decreased as the FTCs increased due to the microstructure damage caused by FTC and SBC, which affects the mechanical properties. A corrosion rate of ≤3% offset the damage caused by 50 FTCs. FTCs and SBC resulted in superimposed damage effects on the concrete. In addition, we established a bond strength damage model based on the joint FTCs and SBC and quantitatively described the degradation law of the macro-mechanical properties. The analysis shows that the influence of FTCs on the bond strength was greater than that of the SBC. These research results can provide a reference and experimental support for the frost-resistant design and durability prediction of hydraulic concrete structures in cold environments.

8.
Front Plant Sci ; 13: 923734, 2022.
Article in English | MEDLINE | ID: mdl-35755652

ABSTRACT

Chinese sorghum (S. bicolor) has been a historically critical ingredient for brewing famous distilled liquors ever since Yuan Dynasty (749 ∼ 652 years BP). Incomplete understanding of the population genetics and domestication history limits its broad applications, especially that the lack of genetics knowledge underlying liquor-brewing properties makes it difficult to establish scientific standards for sorghum breeding. To unravel the domestic history of Chinese sorghum, we re-sequenced 244 Chinese sorghum lines selected from 16 provinces. We found that Chinese sorghums formed three distinct genetic sub-structures, referred as the Northern, the Southern, and the Chishui groups, following an obviously geographic pattern. These sorghum accessions were further characterized in liquor brewing traits and identified selection footprints associated with liquor brewing efficiency. An importantly selective sweep region identified includes several homologous genes involving in grain size, pericarp thickness, and architecture of inflorescence. Our result also demonstrated that pericarp strength rather than grain size determines the ability of the grains to resist repeated cooking during brewing process. New insight into the traits beneficial to the liquor-brewing process provides both a better understanding on Chinese sorghum domestication and a guidance on breeding sorghum as a multiple use crop in China.

9.
Front Cardiovasc Med ; 9: 855053, 2022.
Article in English | MEDLINE | ID: mdl-35571169

ABSTRACT

Background: Serum chloride was recently found to be associated with prognosis of heart failure in western countries. However, the evidence was scarce in Asia. We aimed to investigated the relationship between serum chloride and clinical outcomes in a Chinese cohort with hospitalized heart failure. Methods: We retrospectively analyzed the data from PhysioNet, involving 1996 patients who were admitted with heart failure between December 2016 and June 2019. Outcome was a composite endpoint of all-cause death or rehospitalization at 3 months. Results: The incidence of the composite endpoint was 26.8% (535/1,996); it was 32.2% (213/662), 25.0% (165/661), and 23.3% (157/673) by chloride tertiles (from the lowest to the highest), respectively. The serum chloride at admission was independently and inversely associated with the composite endpoint risk (hazard ratio: 0.967; 95% confidence interval: 0.939 to 0.996; p = 0.026) in contrast to sodium, which was no longer significant (p > 0.05) after multivariable adjustment. Pearson correlation between serum chloride and sodium was 0.747 (p < 0.001). However, an increased AUC was not observed by adding sodium to model composed of age, sex, NYHA class, diabetes, log BNP and chloride (0.620 vs. 0.612, p = 0.132). Subgroup analysis showed the presence or absence of hyponatremia did not affect the association between chloride and composite endpoint risk. Conclusions: Low serum chloride at admission was associated with poor outcomes in Chinese hospitalized patients with heart failure. These findings warrant future studies for tackling the potential pathophysiological mechanisms and correction methods of hypochloremia in heart failure.

10.
Polymers (Basel) ; 14(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35406313

ABSTRACT

Bioinspired composites, capable of tailoring mechanical properties by the strategy of making full use of their advantages and bypassing their drawbacks, are vital for numerous engineering applications such as lightweight ultrahigh-strength, enhanced toughness, improved low-/high- velocity impact resistance, wave filtering, and energy harvesting. Helicoidal composites are examples of them. However, how to optimize the geometric structure to maximize the low-velocity impact resistance of helicoidal composites has been ignored, which is vital to the lightweight and high strength for aerospace, defense, ship, bridge, dam, vessel, and textile industries. Here, we combined experiments and numerical simulations to report the dynamic response of helicoidal composites subjected under low-velocity impact (0-10 m/s). Our helicoidal structures, inspired by the Stomatopod Dactyl club, are fabricated using polylactic acid (PLA) by FFF in a single-phase way. The helicoidal strategy aims to exploit, to a maximum extent, the axial tensile strength of filaments and simultaneously make up the shortage of inter-filament contact strength. We demonstrate experimentally that the low-velocity impact resistance has been enhanced efficiently as the helicoidal angle varies, and that the 15° helicoidal plate is better than others, which has also been confirmed by the numerical simulations. The findings reported here provide a new routine to design composites systems with enhanced impact resistance, offering a method to improve impact performance and expand the application of 3D printing.

11.
Mol Plant ; 15(3): 537-551, 2022 03 07.
Article in English | MEDLINE | ID: mdl-34999019

ABSTRACT

Domestication and diversification have had profound effects on crop genomes. Originating in Africa and subsequently spreading to different continents, sorghum (Sorghum bicolor) has experienced multiple onsets of domestication and intensive breeding selection for various end uses. However, how these processes have shaped sorghum genomes is not fully understood. In the present study, population genomics analyses were performed on a worldwide collection of 445 sorghum accessions, covering wild sorghum and four end-use subpopulations with diverse agronomic traits. Frequent genetic exchanges were found among various subpopulations, and strong selective sweeps affected 14.68% (∼107.5 Mb) of the sorghum genome, including 3649, 4287, and 3888 genes during sorghum domestication, improvement of grain sorghum, and improvement of sweet sorghum, respectively. Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed, and Sh1- and SbTB1-type genes were representative of two prominent models, one of soft selection or multiple origins and one of hard selection or an early single domestication event. We also demonstrated that the Dry gene, which regulates stem juiciness, was unconsciously selected during the improvement of grain sorghum. Taken together, these findings provide new genomic insights into sorghum domestication and breeding selection, and will facilitate further dissection of the domestication and molecular breeding of sorghum.


Subject(s)
Domestication , Sorghum , Genome, Plant/genetics , Genomics , Plant Breeding , Sorghum/genetics
12.
Sci Rep ; 11(1): 21720, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34741060

ABSTRACT

Concrete age is the time since the moment water is added to the cement, and the age of concrete comprehensively reflects the physical properties of the concrete when curing under standard conditions. For concrete under nonstandard conditions, its physical properties are directly related to both its age and temperature history. The equivalent age of concrete is the time at which concrete under nonstandard conditions reaches the same state as concrete under standard conditions. Most equivalent methods, such as the Nurse-Saul function and the Arrhenius function, are based on a maturity index. However, the accuracy of these methods breaks down when the curing temperature range is wide. In this paper, the electrical resistivity of concrete is used as the index to determine the equivalent age of concrete. This method is based on the assumption that concrete with the same mixture proportions has the same electrical resistivity when the maturity of the concrete is the same, regardless of the curing history. The proposed method is advantageous because it can be performed in real time and is nondestructive. To constantly measure the electrical resistivity of concrete, an automatic data acquisition system is developed to monitor the electrical resistivity of concrete and reduce the error caused by polarization as much as possible. Then, a model for predicting the electrical resistivity of concrete under different curing temperatures is proposed to conveniently calculate the equivalent coefficient. Finally, the results calculated by the proposed equivalent method are compared with those of the standard method (Nurse-Saul equation), and the results of the proposed model are found to be more reasonable.

13.
Int J Mol Med ; 47(6)2021 06.
Article in English | MEDLINE | ID: mdl-33907834

ABSTRACT

The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+­ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)­associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague­Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)­κB and activator protein­1 (AP­1) DNA­binding activities induced by TM or H/R. Western blot analysis and semi­quantitative RT­PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol­requiring 1α (IRE1α) signaling pathway and ERS­associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho­p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF­κB p65 and higher levels of tumor necrosis factor (TNF)­α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double­edged sword' effect on ERS­associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF­κB and AP­1 DNA­binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF­κB and the transcription of TNF­α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.


Subject(s)
DNA/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Oxygen/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Transcription Factor AP-1/metabolism , Tunicamycin/pharmacology , Up-Regulation , Animals , Animals, Newborn , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Multienzyme Complexes/metabolism , Myocytes, Cardiac/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Up-Regulation/drug effects
14.
Sensors (Basel) ; 21(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668792

ABSTRACT

A quality evaluation of precise products for BDS-3 constellations is presented for the first time in this contribution. Then, the tropospheric delay retrieval and positioning performance of BDS-3 precise point positioning (PPP) solutions using the precise products (gbm, wum, iac, sha, cnt) with observations from 24 stations from DOY 280 to 317 in 2020 was comprehensively investigated. The orbit comparisons present consistencies of 0.09-0.22 m for the C19-C37 satellites and of 0.5-1.2 m for the C38-C46 satellites among the final products. The standard deviation (STD) values of the clock differences of iac showed the best agreement with those of gbm, followed by wum, sha. The clock differences performance of cnt was the worst. For BDS-3 PPP solutions with five Analysis centers (ACs) products, the median convergence times of static PPP mode incorporating the gbm, wum, iac, sha, and cnt products were 31.0, 33.5, 34.5, 37.8, and 72.0 min, respectively; the median convergence times of kinematic PPP model incorporating the same products were 40.5, 41.0, 50.5, 55.0, and 94.0 min, respectively. The positioning accuracies in the static and kinematic modes were approximately 1-4 cm, 2-6 cm in the horizontal and vertical components, respectively. With the final products in kinematic mode, the performance of PPP with real-time products (cnt) is poorer than all PPP with final products. The median of ZTD accuracies of the five products gbm, wum, iac, sha, and cnt were 7.84, 7.58, 7.04, 7.19, and 10.1 mm, respectively, and the accuracy differences were very small among five AC products (gbm, wum, iac, sha).

15.
Sensors (Basel) ; 21(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374254

ABSTRACT

The high precision positioning can be easily achieved by using real-time kinematic (RTK) and precise point positioning (PPP) or their augmented techniques, such as network RTK (NRTK) and PPP-RTK, even if they also have their own shortfalls. A reference station and datalink are required for RTK or NRTK. Though the PPP technique can provide high accuracy position data, it needs an initialisation time of 10-30 min. The time-relative positioning method estimates the difference between positions at two epochs by means of a single receiver, which can overcome these issues within short period to some degree. The positioning error significantly increases for long-period precise positioning as consequence of the variation of various errors in GNSS (Global Navigation Satellite System) measurements over time. Furthermore, the accuracy of traditional time-relative positioning is very sensitive to the initial positioning error. In order to overcome these issues, an improved time-relative positioning algorithm is proposed in this paper. The improved time-relative positioning method employs PPP model to estimate the parameters of current epoch including position vector, float ionosphere-free (IF) ambiguities, so that these estimated float IF ambiguities are used as a constraint of the base epoch. Thus, the position of the base epoch can be estimated by means of a robust Kalman filter, so that the position of the current epoch with reference to the base epoch can be obtained by differencing the position vectors between the base epoch and the current one. The numerical results obtained during static and dynamic tests show that the proposed positioning algorithm can achieve a positioning accuracy of a few centimetres in one hour. As expected, the positioning accuracy is highly improved by combining GPS, BeiDou and Galileo as a consequence of a higher amount of used satellites and a more uniform geometrical distribution of the satellites themselves. Furthermore, the positioning accuracy achieved by using the positioning algorithm here described is not affected by the initial positioning error, because there is no approximation similar to that of the traditional time-relative positioning. The improved time-relative positioning method can be used to provide long-period high precision positioning by using a single dual-frequency (L1/L2) satellite receiver.

16.
Sensors (Basel) ; 20(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824205

ABSTRACT

The orbital maneuvers of the global navigation satellite system (GNSSs) have a significant influence on the performance of the precise positioning, navigation, and timing (PNT) services. Because the Chinese BeiDou Navigation Satellite System (BDS) has three types of satellites in the geostationary orbit (GEO), inclined geosynchronous orbit (IGSO), and medium earth orbit (MEO) maneuvers occur more frequently. Thus, it is essential to determine an effective approach for the detection of orbital maneuvers. This study proposes a method for the detection of orbital maneuvers using epoch-differenced carrier phase observations and broadcast ephemeris data. When using the epoch-differenced velocity estimation as a basic data solution model, the time discrimination and satellite identification factors are defined and used for the real-time detection of the beginning and the pseudorandom noise code (PRN) of satellites. The datasets from four GNSS stations (WUH1, BJF1, POHN, CUT0) from the year 2016 were collected and analyzed. The validations showed that the beginning, the PRN of the orbital maneuver of the satellite can be precisely detected in real time for all GEO, IGSO, and MEO satellites, and the detected results also showed good consistency, with the beginning time at a difference of 1-2 min across different stations. The proposed approach was observed to be more sensitive, and the detected beginning time was about 30 min earlier than the single point positioning approach when the high-precision carrier phase observation was used. Thus, orbital maneuvering can be accurately detected by the proposed method. It not only improves the utilization of the collected data but also improves the performance of PNT services.

17.
Sensors (Basel) ; 20(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121438

ABSTRACT

The satellite-induced code bias variation of geostationary satellite orbit satellites and medium earth orbit satellites of the second-generation BeiDou Navigation Satellite System (BDS-2) exceeds 1 m, which severely affects the accuracy and stability of the ambiguity resolution and high-precision positioning. With the development of the third-generation BDS (BDS-3) with a new system design and new technology, analysis of the satellite-induced code variation characteristics of BDS-3 has become increasingly important. At present, many scholars have explored the satellite-induced code bias of BDS-3, but most of them focus on BDS-3 experimental satellites via normal geodetic antenna. Compared to normal geodetic antenna, the 40-m dish antenna from the National Time Service Center can accurately detect satellite-induced code variations with low noise and high gain. Thus, observational data from fifteen BDS-3 medium earth orbit satellites are collected with the B1I/B2b/B3I/B1C/B2a frequency bands on the day of year (DOY) 199-206 in 2019, the PRN numbers of which are C19/C20/C21/C22/C23/C24/C25/C26/C27/C28/C30/C32/C33 /C35/C37, via the 40 m dish antenna to analyze the code bias variation characteristics. The results show that the obvious satellite-induced elevation­dependent code bias variations exist in the B1I/B2b/B3I/B1C/B2a frequency bands of C28, compared with other satellites. Similarly, the multipath (MP) combination of B3I has an obvious elevation­dependent variation within a range of 0.1 m for C21/C24/C27/C28/C37 and elevation­dependent variation of the B2a and B2b frequency bands also exists in most satellites with a range of 0.1 m. However, the MP combination values of some satellites are asymmetric with respect to elevation, which is different from BDS-2 satellites and especially obvious for BDS-3 satellites B1I and BIC frequency bands with elevation­dependent variations of 0.2 m, indicating that the code bias variation is not uniquely related to elevation, especially for the B1I/BIC frequency bands. What's more, the satellite-induced code bias variation of the BDS-3 satellites is greatly reduced compared with that of the BDS-2 satellites. In addition, the similar code bias variation appears at the Xia1 station with a normal geodetic antenna of B1I/B1C/B3I/B2a/B2b of C21, B3I/B2a/B2b of C24 and B2b of C28 among B1I/B1C/B3I/B2a/B2b of C21/C24/C27/C28/C37. The influence of the BDS-3 satellite-induced elevation­dependent code bias on precision positioning and ambiguity fixing is worth further study using different antennas or receivers.

18.
Aging (Albany NY) ; 11(24): 11865-11879, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31881012

ABSTRACT

Our study aspires to understand the impact of miR-27b on myocardial fibrosis as well as its functional mechanism. 12 days post the ligation of coronary artery in rats, the expression of miR-27b in the peri-infarction region was elevated. Treating cultivated rat neonatal cardiac fibroblasts (CFs) with angiotensin II (AngII) also enhanced the miR-27b expression. Forced expression of miR-27b promoted the proliferation and collagen production in rat neonatal CFs, as revealed by cell counting, MTT assay, and quantitative reverse transcription-polymerase chain reaction. FBW7 was found to be the miR-27b's target since the overexpression of miR-27b reduced the transcriptional level of FBW7. The enhanced expression of FBW7 protein abrogated the effects of miR-27b in cultured CFs, while the siRNA silence of FBW7 promoted the pro-fibrosis activity of AngII. As to the mechanism, we found that the expression of FBW7 led to the degradation of Snail, which is an important regulator of cardiac epithelial-mesenchymal transitions. Importantly, inhibition of miR-27b abrogated the coronary artery ligation (CAL) induced cardiac fibrosis in vivo, suggesting that it might be a potential target for the treatment of fibrosis associated cardiac diseases.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , MicroRNAs/metabolism , Myocardium/pathology , Snail Family Transcription Factors/metabolism , Animals , Cell Proliferation/physiology , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Male , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
19.
Turk J Med Sci ; 49(3): 928-938, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31122000

ABSTRACT

Background/aim: Diabetic vascular smooth muscle cells (VSMCs) are characterized by increased proliferation and migration. Small noncoding microRNAs (miRNAs) have been considered critical modulators of the VSMC phenotypic switch after an environmental stimulus. However, microRNA in high glucose-induced proinflammation and its atherogenic effect is still ambiguous. Materials and methods: The technique of qRT-PCR was used to examine the expression of miR-9 in VSMCs. The downstream signaling protein relative to miR-9 regulation, Krüppel-like factor 5, and some marker genes of contractile VSMCs were analyzed by western blotting and qRT-PCR. Luciferase reporter assay was used to detect the expression of KLF5, which is regulated by miR-9. To examine the function of a miR-9 inhibitor in VSMC proliferation and migration, VSMC proliferation and migration assays were performed. Results: Reduced transcriptional levels of miR-9 and expression of specific genes of contractile VSMCs were observed in the SMC cell line C-12511 treated with high glucose and SMCs, which were isolated from db/db mice. Moreover, the activity of KLF5 3'-UTR was dramatically reduced by a miR-9 mimic and increased by a miR-9 inhibitor. The proliferation and migration of SMCs were reduced by the miR-9 mimic. Conclusion: miR-9 inhibits the proliferation and migration of SMC by targeting KLF5 in db/db mice.


Subject(s)
Cell Differentiation/genetics , Kruppel-Like Transcription Factors/genetics , MicroRNAs/genetics , Muscle, Smooth, Vascular/cytology , Animals , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Mice, Transgenic , MicroRNAs/metabolism , Phenotype
20.
Sensors (Basel) ; 18(4)2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29596330

ABSTRACT

This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

SELECTION OF CITATIONS
SEARCH DETAIL
...