Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38051625

ABSTRACT

Leg properties have been involved in the broad study of human walking from mechanical energy to motion prediction of robotics. However, the variable leg elasticities and their functions during gait have not been fully explored. This study presented that the fundamental leg properties during human walking comprise axial stiffness, rest leg length, tangential stiffness and force-free leg angles. We measured the axial force-leg length and tangential force-leg angle data in eight participants (mean ± s.d. age 24.6 ± 3.0 years, mass 68.2 ± 6.8 kg, height 177.5 ± 5.2 cm) at three self-selected walking speeds (slow: 1.25 ± 0.22, normal: 1.48 ± 0.28, fast: 1.75 ± 0.32 m/s) on two different contact conditions (fixed and moving). After obtaining these gait measurements, we extracted the linear and nonlinear leg elasticities during human walking by using a minimum root-mean-square fitting. We found that the axial stiffness of nonlinear elasticity (fixed condition: 7.1-8.0, moving condition: 21.3-22.6) is higher than that of the linear elasticity (fixed condition: 5.0-5.7, moving condition: 15.2-16.5). The tangential stiffness behaves different during four stance phases of gait, with the highest (linear: 2.52-3.72, nonlinear: 1.71-2.01, in moving condition) occurred at early stance and second highest at late stance, followed by two stiffnesses in mid-stance. For both linearity and nonlinearity, the axial stiffness and rest length are independent of walking speeds in both contact conditions, while the tangential stiffness and contact angles are independent of walking speeds only in moving condition. Regardless of walking speed, elasticity and contact condition, the force-free contact angle at mid-stance is maintained at average of 82.2 °. This paper first demonstrates the mechanical walking leg property from both axial and tangential aspects. The findings provide insight into the fundamental properties including linearity and nonlinearity of human leg during locomotion for stability analysis and precise motion prediction of robotics and rehabilitation exoskeletons.


Subject(s)
Leg , Walking , Humans , Young Adult , Adult , Biomechanical Phenomena , Gait , Locomotion
2.
Biomimetics (Basel) ; 8(2)2023 May 25.
Article in English | MEDLINE | ID: mdl-37366816

ABSTRACT

Similar to biological muscles in nature, artificial muscles have unique advantages for driving bionic robots. However, there is still a large gap between the performance of existing artificial muscles and biological muscles. Twisted polymer actuators (TPAs) convert rotary motion from torsional to linear motion. TPAs are known for their high energy efficiency and large linear strain and stress outputs. A simple, lightweight, low-cost, self-sensing robot powered using a TPA and cooled using a thermoelectric cooler (TEC) was proposed in this study. Because TPA burns easily at high temperatures, traditional soft robots driven by TPAs have low movement frequencies. In this study, a temperature sensor and TEC were combined to develop a closed-loop temperature control system to ensure that the internal temperature of the robot was 5 °C to cool the TPAs quickly. The robot could move at a frequency of 1 Hz. Moreover, a self-sensing soft robot was proposed based on the TPA contraction length and resistance. When the motion frequency was 0.01 Hz, the TPA had good self-sensing ability and the root-mean-square error of the angle of the soft robot was less than 3.89% of the measurement amplitude. This study not only proposed a new cooling method for improving the motion frequency of soft robots but also verified the autokinetic performance of the TPAs.

3.
Front Microbiol ; 14: 1188167, 2023.
Article in English | MEDLINE | ID: mdl-37200919

ABSTRACT

Manure is a potential substitute for chemical phosphate fertilizer, especially in intensive agriculture, such as greenhouse farming, but the associations between soil phosphorus (P) availability and the soil microbial community under manure application instead of chemical phosphate fertilizers are still rarely addressed. In this study, a field experiment in greenhouse farming with manure application instead of chemical phosphate fertilizers was established, including five treatments: a control with conventional fertilization and chemical phosphate fertilizer substitution treatments using manure as the sole P resource at 25% (0.25 Po), 50% (0.50 Po), 75% (0.75 Po), and 100% (1.00 Po) of the control. Except for 1.00 Po, all the treatments applied with manure harbored similar levels of available P (AP) as the control. Most of the bacterial taxa involved in P transformation were enriched in manure treatments. Treatments of 0.25 Po and 0.50 Po significantly enhanced bacterial inorganic P (Pi) dissolution capacity, while 0.25 Po decreased bacterial organic P (Po) mineralization capacity. In contrast, the 0.75 Po and 1.00 Po treatments significantly decreased the bacterial Pi dissolution capacity and increased the Po mineralization capacity. Further analysis revealed that the changes in the bacterial community were significantly correlated with soil pH, total carbon (TC), total nitrogen (TN), and AP. These results revealed the dosage effect of the impact of manure on soil P availability and microbial P transformation capacity and emphasized that an appropriate dosage of organic manure is important in practical production.

4.
Biomimetics (Basel) ; 8(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36648804

ABSTRACT

The human tibiofibular complex has undergone a long evolutionary process, giving its structure a high bearing-capacity. The distinct tibiofibular shape can be used in engineering to acquire excellent mechanical properties. In this paper, four types of bionic tubes were designed by extracting the dimensions of different cross-sections of human tibia-fibula. They had the same outer profiles, but different inner shapes. The concept of specific stiffness was introduced to evaluate the mechanical properties of the four tubes. Finite-element simulations and physical bending-tests using a universal testing machine were conducted, to compare their mechanical properties. The simulations showed that the type 2 bionic tube, i.e., the one closest to the human counterpart, obtained the largest specific-stiffness (ε = 6.46 × 104), followed by the type 4 (ε = 6.40 × 104) and the type 1 (ε = 6.39 × 104). The type 3 had the largest mass but the least stiffness (ε = 6.07 × 104). The specific stiffness of the type 2 bionic tube increased by approximately 25.8%, compared with that of the type 3. The physical tests depicted similar findings. This demonstrates that the bionic tube inspired by the human tibiofibular shape has excellent effectiveness and bending properties, and could be used in the fields of healthcare engineering, such as robotics and prosthetics.

5.
Article in English | MEDLINE | ID: mdl-36374868

ABSTRACT

Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast. Muscle forces and mechanical work were calculated by using a subject-specified musculoskeletal model. The functions of individual muscles were characterized as four functional behaviors (strut, spring, motor, damper), which were determined based on the mechanical energy. The results showed that during collision, hip flexors (iliacus and psoas major) and ankle dorsiflexors (anterior tibialis) were the most dominant muscles in buffering the stride with energy absorption; during rebound, the posterior muscles (gluteus maximus, gastrocnemius, posterior tibialis, soleus) contributed the most to energy generation; during preload, energy for preparing push-off was mainly absorbed by the muscles surrounding knee (vastus, semimembranosus, semitendinosus); during push-off, ankle plantar flexors (gastrocnemius, soleus, posterior tibialis, peroneus muscles, flexor digitorum, flexor hallucis) mainly behaved to generate energy for forward propulsion. With increased walking speed, additional energy (almost 400%) from harder stride was mainly absorbed by the flexor muscles. Hip extensors and adductors transferred more energy (around 150%) to the distal segments during rebound. Soleus and gastrocnemius muscles generated more energy (about 75%) to the proximal segments for propulsion. Along with our previous study of joint-level energy analysis, these findings could assist better understanding of human musculoskeletal behaviors during locomotion and provide principles for the bio-design of related assistive devices from motors performance enhancement to rehabilitation such as exoskeleton and prosthesis.


Subject(s)
Muscle, Skeletal , Walking , Humans , Walking/physiology , Muscle, Skeletal/physiology , Gait/physiology , Lower Extremity , Ankle , Biomechanical Phenomena
6.
Int J Numer Method Biomed Eng ; 38(9): e3617, 2022 09.
Article in English | MEDLINE | ID: mdl-35560814

ABSTRACT

Most researchers have performed finite element (FE) analysis of the human forearm fracture by exploring the strength and load transmission of the bones. However, few studies concentrated a complete simulation of the whole forearm complex including ligaments. This paper aims to investigate the load transmission through the bones, contact stress at the joints and strain in the ligaments by using an elaborate FE model, further validating the fracture condition for human forearm. The interosseous ligament was separated into three regions based on the distance to the proximal and distal ends. The FE simulation results were slightly more or less than a previous experimental data in the literature, but generally provided a close approximation of the bone and ligament behaviors. Compared with the experiment results under different loading conditions, maximum contact stress at the proximal radio ulnar joint (PRUJ) and distal radio ulnar joint (DRUJ) of the simulations was higher with an average of 13.4%, and peak strain in the interosseous ligament (IOL) was lower with an average of 11.0%. Under 10 kg load, the maximum stress in the radius (2.25 MPa) was less than double the value in the ulna (1.43 MPa). Finally, the FE model has been validated with the onset and location of the Colles' fracture in the literature. This study will provide a great benefit in terms of surgical and medical applications related to forearm fracture that require an extensive knowledge of the behavior of the bones and ligaments under various loading conditions.


Subject(s)
Forearm , Ulna , Biomechanical Phenomena , Finite Element Analysis , Humans , Radius
7.
Article in English | MEDLINE | ID: mdl-35482694

ABSTRACT

The level of joint laxity, which is an indicator of accurate diagnosis for musculoskeletal conditions is manually determined by a physician. Studying joint laxity via artificial joints is an efficient and economical way to improve patient experience and joint proficiency. However, most of study focus on the joint geometry but are inadequate with regard to the tailored mechanical properties of soft tissues. On the basis of collagen fibril deformation, this study proposes bioinspired 3D fibers braided from polyethene multifilament for the reproduction of the controlled nonlinear behavior of ligaments and tendons. Four braided bands are designed, all showing biological behaviors. Two knot-based bands exhibit large toe strains of 10.98% and 5.33% but low linear modulus of 239.84 MPa and 826.05 MPa. The other two bands without knots exhibit lower toe strains of 1.61% and 1.52% but high linear modulus of 2605.27 MPa and 2050.74 MPa. Empirical formulas for braiding parameters (wales and courses) and mechanical properties are expressed to provide a theoretical basis for the mimicry of different tissues in the human body by artificial joints. All parameters have significant effects on the linear region of the load-displacement curve of a fiber due to braided structure, while changing the number of wales facilitates a major contribution to the toe region. A biofidelic human knee has been successfully reconstructed by using bioinspired 3D braided fibers. This study demonstrates that the nonlinear mechanical properties of soft tissues can be replicated by bioinspired 3D braided fibers, further yielding the design of more biomechanically realistic artificial joints.


Subject(s)
Joint Instability , Humans , Knee Joint , Ligaments , Reproduction , Tendons
8.
Bioengineering (Basel) ; 10(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36671620

ABSTRACT

In the existing research on prosthetic footplates, rehabilitation insoles, and robot feet, the cushioning parts are basically based on simple mechanisms and elastic pads. Most of them are unable to provide adequate impact resistance especially during contact with the ground. This paper developed a bioinspired heel pad by optimizing the inner structures inspired from human heel pad which has great cushioning performance. The distinct structures of the human heel pad were determined through magnetic resonance imaging (MRI) technology and related literatures. Five-layer pads with and without inner structures by using two materials (soft rubber and resin) were obtained, resulting in four bionic heel pads. Three finite element simulations (static, impact, and walking) were conducted to compare the cushioning effects in terms of deformations, ground reactions, and principal stress. The optimal pad with bionic structures and soft rubber material reduced 28.0% peak vertical ground reaction force (GRF) during walking compared with the unstructured resin pad. Human walking tests by a healthy subject wearing the 3D printed bionic pads also showed similar findings, with an almost 20% decrease in peak vertical GRF at normal speed. The soft rubber heel pad with bionic structures has the best cushioning performance, while the unstructured resin pad depicts the poorest. This study proves that with proper design of the inner structures and materials, the bionic pads will demonstrate distinct cushioning properties, which could be applied to the engineering fields, including lower limb prosthesis, robotics, and rehabilitations.

9.
Anal Chem ; 91(20): 12688-12695, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31538775

ABSTRACT

Glyoxal (GLY) acts as a key contributor to tropospheric ozone production and secondary organic aerosol (SOA) formation on local to regional scales. The detection of GLY provides useful indicators of fast photochemistry occurring in the lower troposphere. The fast and sensitive detection of GLY is thus important, while traditional chemical ionization such as the proton-transfer reaction (PTR) is extremely limited by the poor detection limit and extensive fragmentation. To address these limitations, electron attachment reaction (EAR) ionization was applied to detect GLY. The generation of parent anions (GLY-) without fragmentation was observed, and cryogenic photoelectron imaging spectroscopy further characterized the structure of GLY-. The detection limit was estimated to be as low as (52 ± 1) pptv (parts per trillion by volume) with 1 min measurements. Other components in ambient air, such as water, carbon dioxide, and trace gases (acetone, propanal, etc.) have no effect on the detection of GLY. The EAR ionization is more promising than PTR ionization in detecting GLY. The detection of GLY in ambient air by the EAR ionization has been demonstrated.

10.
Anal Chem ; 90(22): 13467-13474, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30347147

ABSTRACT

Methylglyoxal (MGLY) plays a significant role in atmospheric chemistry by serving as a key contributor to the formation of active free radicals, ozone, and secondary organic aerosol. Detection of MGLY by traditional chemical ionization such as proton-transfer reaction has several shortcomings such as parent molecule fragmentation. In this study, an electron attachment reaction (EAR) ionization method has been developed for the effective detection of MGLY. Almost no fragmentation was observed during the EAR. The generation of MGLY- anion in the EAR was further confirmed by cryogenic photoelectron imaging spectroscopy. The concentration of MGLY can be calibrated by using dibromomethane (CH2Br2) as reference gas. The detection sensitivity of MGLY was estimated to be (100 ± 2) mV/ppbv (parts per billion by volume). The O2, H2O, CO2, and trace gases in ambient air have no obvious effects on the detection of MGLY- anion by the EAR ionization method.

SELECTION OF CITATIONS
SEARCH DETAIL
...