Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 235: 113775, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330688

ABSTRACT

Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation. After purification, these exosomes were loaded onto anodized titanium scaffolds. Notably, the scaffolds loaded with exosomes deriving from osteogenic differentiated hDPSCs demonstrated superior bone tissue regeneration compared to those loaded with exosomes deriving from hDPSCs within 10-week. RNA-sequencing analysis shed light on the underlying mechanism, revealing that the osteogenic exosomes carried specific cargo, which is due to upregulated miRNAs (Hsa-miR-29c-5p, Hsa-miR-378a-5p, Hsa-miR-10b-5p and Hsa-miR-9-3p) associated with osteogenesis. And down-regulated anti-osteogenic miRNA (Hsa-miR-31-3p, Hsa-miR-221-3p, Hsa-miR-183-5p and Hsa-miR-503-5p). In conclusion, the identification and utilization of exosomes derived from osteogenic differentiated stem cells offer a novel and promising strategy for achieving cell-free bone regeneration.


Subject(s)
Exosomes , MicroRNAs , Humans , Osteogenesis/genetics , Titanium/pharmacology , Dental Pulp , MicroRNAs/genetics , Bone Regeneration , Stem Cells , Cell Differentiation
2.
Biomed Mater ; 18(4)2023 05 18.
Article in English | MEDLINE | ID: mdl-37168005

ABSTRACT

Ramie fiber (RF) has excellent tensile strength and breathability, making it a promising material for biomedical applications. However, few studies on the antibacterial properties and biocompatibility of RF have been reported. This study aimed to investigate the antibacterial property and biocompatibility of RF with bacteria and fibroblasts. The results showed that the antibacterial activity of RF was better than that of natural cotton fiber (NCF) and close to that of medical cotton fiber (MCF) for bothStaphylococcus aureus(S. aureus) andEscherichia coli(E.coli), and RF was more antibacterial againstS. aureusthanE.coli. The RF, MCF and NCF promoted the proliferation and spread of mouse fibroblast (L929) cells. The results indicated that RF has excellent antibacterial properties and biocompatibility, making it a potential biomaterial for biomedical applications.


Subject(s)
Boehmeria , Mice , Animals , Staphylococcus aureus , Biocompatible Materials , Tensile Strength , Anti-Bacterial Agents/pharmacology
3.
Biomed Mater ; 17(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35042197

ABSTRACT

The biological aging of titanium implants affects the service lifetime negatively in clinical applications, and Ultraviolet (UV) irradiation is an applicable method to overcome the biological aging. This study investigated the changes in surface characteristics and biological properties of bioactive titanium surfaces with different structure and topography after Ultraviolet C (UVC) irradiation. The bioactive titanium surfaces were prepared by anodizing (AO), sandblasting and acid-etching (SLA), acid-alkali etching (AA), alkali-heat etching (AH) methods. Samples were stored at dark for 7 weeks to simulate biological aging process and then irradiated by UVC for 2 h. The results showed that the hydroxyl groups (Ti-OH) on surfaces, which are crucial to enhance the biological properties, were easier to be generated on AO surfaces by UVC-irradiation, owing to a mixture of anatase and rutile on surfaces. UVC-irradiation had the strongest effect on AO surfaces to enhance the bioactivity in bone-like apatite deposition and better biocompatibility in mesenchymal stem cells (MSCs) attachment and proliferation. Therefore, titanium surfaces with a mixture phase of anatase and rutile have the potential to effectively utilize the benefits of UVC-irradiation to overcome the negative effects of the biological aging and have a promising clinical application prospect.


Subject(s)
Aging , Titanium , Ultraviolet Rays , Aging/drug effects , Aging/radiation effects , Animals , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Osteogenesis/radiation effects , Rabbits , Surface Properties
4.
Bioact Mater ; 6(12): 4568-4579, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34095616

ABSTRACT

Peri-implantitis are a major problem causing implant failure these days. Accordingly, anti-infection during the early stage and subsequent promotion of osseointegration are two main key factors to solve this issue. Micro-arc oxidation (MAO) treatment is a way to form an oxidation film on the surface of metallic materials. The method shows good osteogenic properties but weak antibacterial effect. Therefore, we developed combined strategies to combat severe peri-implantitis, which included the use of a novel compound, PD, comprising dendrimers poly(amidoamine) (PAMAM) loading dimethylaminododecyl methacrylate (DMADDM) as well as MAO treatment. Here, we explored the chemical properties of the novel compound PD, and proved that this compound was successfully synthesized, with the loading efficiency and encapsulation efficiency of 23.91% and 31.42%, respectively. We further report the two-stage double benefits capability of PD + MAO: (1) in the first stage, PD + MAO could decrease the adherence and development of biofilms by releasing DMADDM in the highly infected first stage after implant surgery both in vitro and in vivo; (2) in the second stage, PD + MAO indicated mighty anti-infection and osteoconductive characteristics in a rat model of peri-implantitis in vivo. This study first reports the two-staged, double benefits of PD + MAO, and demonstrates its potential in clinical applications for inhibiting peri-implantitis, especially in patients with severe infection risk.

5.
Colloids Surf B Biointerfaces ; 188: 110783, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32004907

ABSTRACT

The failure of dental implants is usually caused by bacteria infection, poor bioactivity and biocompatibility. It is a common phenomenon clinically. Statherin, a salivary protein, plays a crucial role of mediator between materials and cells/bacteria. However, the conformation of statherin might be changed by the implants in vivo. In this study, we investigated the effects of statherin on the bioactivities, antibacterial abilities and biocompatibilities of the titanium metals and the reaction mechanism. We found that the conformation of statherin was mainly influenced by surface composition, surface structure, surface roughness, surface hydrophilia and Ti-OH groups of materials. Statherin could decrease the cell biocompatibility of the titanium metals including pure titanium (PT), anodic oxidation (AO), sandblasting and etching (SLA) and plasma spraying hydroxyapatite (HA) coating in HGF cell experiments, regulate the bio-mineralization ability of HA coating in SBF, and enhance the antibacterial properties of PT and HA coating. This study revealed that surface properties of materials could change the conformation of statherin, which influenced the bioactivities, antibacterial properties and biocompatibilities of the materials in return.


Subject(s)
Anti-Bacterial Agents/metabolism , Coated Materials, Biocompatible/metabolism , Salivary Proteins and Peptides/metabolism , Titanium/metabolism , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Dental Implants , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Microbial Sensitivity Tests , Particle Size , Protein Conformation , Salivary Proteins and Peptides/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties , Titanium/chemistry , Titanium/pharmacology
6.
J Biomed Mater Res A ; 107(6): 1253-1263, 2019 06.
Article in English | MEDLINE | ID: mdl-30701665

ABSTRACT

Oxidative stress could cause damage to lipids, proteins and DNA, which is induced by the imbalance between the production of reactive oxygen species (ROS) and the biological system ability to counteract or detoxify their harmful effects. The oxidative stress damage significantly contributes to a number of diseases. Magnesium (Mg) is endowed with a novel function of removing excess ROS by releasing H2 during the degradation. In this study, in order to explore the property of anti-oxidative damage of Mg metal, rat bone marrow mesenchymal stem cells (MSCs) oxidative damaged by ultraviolet (UV) radiation was employed to co-culture with Mg metal. The effect of Mg metal on the response of antioxidant enzymes and mitochondria in MSCs was studied. We found that Mg metal could reduce the cellular oxidative stress damage and elevate the activities of antioxidant enzymes to maintain redox homeostasis. In addition, Mg metal could reduce the risk of UV-induced cell apoptosis by increasing the ratio of Bcl-2/Bax, elevating the mitochondrial membrane potential and blocking the release of cytochrome c. This finding showed Mg metal might have the potential for treating diseases caused by oxidative stress damage. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1253-1263, 2019.


Subject(s)
Bone Marrow Cells/metabolism , Magnesium/pharmacology , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Ultraviolet Rays/adverse effects , Animals , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Rats
7.
Ear Hear ; 39(4): 795-809, 2018.
Article in English | MEDLINE | ID: mdl-29360687

ABSTRACT

OBJECTIVE: We investigate the clinical effectiveness of a novel deep learning-based noise reduction (NR) approach under noisy conditions with challenging noise types at low signal to noise ratio (SNR) levels for Mandarin-speaking cochlear implant (CI) recipients. DESIGN: The deep learning-based NR approach used in this study consists of two modules: noise classifier (NC) and deep denoising autoencoder (DDAE), thus termed (NC + DDAE). In a series of comprehensive experiments, we conduct qualitative and quantitative analyses on the NC module and the overall NC + DDAE approach. Moreover, we evaluate the speech recognition performance of the NC + DDAE NR and classical single-microphone NR approaches for Mandarin-speaking CI recipients under different noisy conditions. The testing set contains Mandarin sentences corrupted by two types of maskers, two-talker babble noise, and a construction jackhammer noise, at 0 and 5 dB SNR levels. Two conventional NR techniques and the proposed deep learning-based approach are used to process the noisy utterances. We qualitatively compare the NR approaches by the amplitude envelope and spectrogram plots of the processed utterances. Quantitative objective measures include (1) normalized covariance measure to test the intelligibility of the utterances processed by each of the NR approaches; and (2) speech recognition tests conducted by nine Mandarin-speaking CI recipients. These nine CI recipients use their own clinical speech processors during testing. RESULTS: The experimental results of objective evaluation and listening test indicate that under challenging listening conditions, the proposed NC + DDAE NR approach yields higher intelligibility scores than the two compared classical NR techniques, under both matched and mismatched training-testing conditions. CONCLUSIONS: When compared to the two well-known conventional NR techniques under challenging listening condition, the proposed NC + DDAE NR approach has superior noise suppression capabilities and gives less distortion for the key speech envelope information, thus, improving speech recognition more effectively for Mandarin CI recipients. The results suggest that the proposed deep learning-based NR approach can potentially be integrated into existing CI signal processors to overcome the degradation of speech perception caused by noise.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness/rehabilitation , Deep Learning , Noise , Speech Perception , Adult , Child , Female , Humans , Male , Middle Aged , Signal-To-Noise Ratio , Young Adult
8.
IEEE Trans Biomed Eng ; 64(7): 1568-1578, 2017 07.
Article in English | MEDLINE | ID: mdl-28113304

ABSTRACT

OBJECTIVE: In a cochlear implant (CI) speech processor, noise reduction (NR) is a critical component for enabling CI users to attain improved speech perception under noisy conditions. Identifying an effective NR approach has long been a key topic in CI research. METHOD: Recently, a deep denoising autoencoder (DDAE) based NR approach was proposed and shown to be effective in restoring clean speech from noisy observations. It was also shown that DDAE could provide better performance than several existing NR methods in standardized objective evaluations. Following this success with normal speech, this paper further investigated the performance of DDAE-based NR to improve the intelligibility of envelope-based vocoded speech, which simulates speech signal processing in existing CI devices. RESULTS: We compared the performance of speech intelligibility between DDAE-based NR and conventional single-microphone NR approaches using the noise vocoder simulation. The results of both objective evaluations and listening test showed that, under the conditions of nonstationary noise distortion, DDAE-based NR yielded higher intelligibility scores than conventional NR approaches. CONCLUSION AND SIGNIFICANCE: This study confirmed that DDAE-based NR could potentially be integrated into a CI processor to provide more benefits to CI users under noisy conditions.


Subject(s)
Cochlear Implants , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Sound Spectrography/methods , Speech Intelligibility/physiology , Speech Production Measurement/methods , Algorithms , Humans , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio , Sound Spectrography/instrumentation , Speech Production Measurement/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...