Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(19): e2312797, 2024 May.
Article in English | MEDLINE | ID: mdl-38288643

ABSTRACT

The integration of graphene and metal-organic frameworks (MOFs) has numerous implications across various domains, but fabricating such assemblies is often complicated and time-consuming. Herein, a one-step preparation of graphene-MOF assembly is presented by directly impregnating vertical graphene (VG) arrays into the zeolitic imidazolate framework (ZIF) precursors under ambient conditions. This approach can effectively assemble multiple ZIFs, including ZIF-7, ZIF-8, and ZIF-67, resulting in their uniform dispersion on the VG with adjustable sizes and shapes. Hydrogen defects on the VG surface are critical in inducing such high-efficiency ZIF assembly, acting as the reactive sites to interact with the ZIF precursors and facilitate their crystallisation. The versatility of VG-ZIF-67 assembly is further demonstrated by exploring the process of MOF amorphization. Surprisingly, this process leads to an amorphous thin-film coating formed on VG (named VG-IL-amZIF-67), which preserves the short-range molecular bonds of crystalline ZIF-67 while sacrificing the long-range order. Such a unique film-on-graphene architecture maintains the essential characteristics and functionalities of ZIF-67 within a disordered arrangement, making it well-suited for electrocatalysis. In electrochemical oxygen reduction, VG-IL-amZIF-67 exhibits exceptional activity, selectivity, and stability to produce H2O2 in acid media.

2.
ACS Nano ; 17(22): 22227-22239, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37965727

ABSTRACT

Green hydrogen production from renewably powered water electrolysis is considered as an ideal approach to decarbonizing the energy and industry sectors. Given the high-cost supply of ultra-high-purity water, as well as the mismatched distribution of water sources and renewable energies, combining seawater electrolysis with coastal solar/offshore wind power is attracting increasing interest for large-scale green hydrogen production. However, various impurities in seawater lead to corrosive and toxic halides, hydroxide precipitation, and physical blocking, which will significantly degrade catalysts, electrodes, and membranes, thus shortening the stable service life of electrolyzers. To accelerate the development of seawater electrolysis, it is crucial to widen the working potential gap between oxygen evolution and chlorine evolution reactions and develop flexible and highly efficient seawater purification technologies. In this review, we comprehensively discuss present challenges, research efforts, and design principles for direct/indirect seawater electrolysis from the aspects of materials engineering and system innovation. Further opportunities in developing efficient and stable catalysts, advanced membranes, and integrated electrolyzers are highlighted for green hydrogen production from both seawater and low-grade water sources.

3.
ACS Nano ; 17(17): 17070-17081, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37590207

ABSTRACT

Metallic nanoarchitectures hold immense value as functional materials across diverse applications. However, major challenges lie in effectively engineering their hierarchical porosity while achieving scalable fabrication at low processing temperatures. Here we present a liquid-metal solvent-based method for the nanoarchitecting and transformation of solid metals. This was achieved by reacting liquid gallium with solid metals to form crystalline entities. Nanoporous features were then created by selectively removing the less noble and comparatively softer gallium from the intermetallic crystals. By controlling the crystal growth and dealloying conditions, we realized the effective tuning of the micro-/nanoscale porosities. Proof-of-concept examples were shown by applying liquid gallium to solid copper, silver, gold, palladium, and platinum, while the strategy can be extended to a wider range of metals. This metallic-solvent-based route enables low-temperature fabrication of metallic nanoarchitectures with tailored porosity. By demonstrating large-surface-area and scalable hierarchical nanoporous metals, our work addresses the pressing demand for these materials in various sectors.

4.
Small ; 19(40): e2302338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37267930

ABSTRACT

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.

5.
Angew Chem Int Ed Engl ; 62(38): e202301435, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37246161

ABSTRACT

CO2 reduction, two-electron O2 reduction, and N2 reduction are sustainable technologies to valorise common molecules. Their further development requires working electrode design to promote the multistep electrochemical processes from gas reactants to value-added products at the device level. This review proposes critical features of a desirable electrode based on the fundamental electrochemical processes and the development of scalable devices. A detailed discussion is made to approach such a desirable electrode, addressing the recent progress on critical electrode components, assembly strategies, and reaction interface engineering. Further, we highlight the electrode design tailored to reaction properties (e.g., its thermodynamics and kinetics) for performance optimisation. Finally, the opportunities and remaining challenges are presented, providing a framework for rational electrode design to push these gas reduction reactions towards an improved technology readiness level (TRL).

6.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36727675

ABSTRACT

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

7.
ACS Appl Mater Interfaces ; 14(36): 40822-40833, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36036714

ABSTRACT

Hydrogen production through water electrolysis is a promising method to utilize renewable energy in the context of urgent need to phase out fossil fuels. Nickel-molybdenum (NiMo) electrodes are among the best performing non-noble metal-based electrodes for hydrogen evolution reaction in alkaline media (alkaline HER). Albeit exhibiting stable performance in electrolysis at a constant power supply (i.e., constant electrolysis), NiMo electrodes suffer from performance degradation in electrolysis at an intermittent power supply (i.e., intermittent electrolysis), which is emblematic of electrolysis powered directly by renewable energy (such as wind and solar power sources). Here we reveal that NiMo electrodes were oxidized by dissolved oxygen during power interruption, leading to vanishing of metallic Ni active sites and loss of conductivity in MoOx substrate. Based on the understanding of the degradation mechanism, chromium (Cr) coating was successfully applied as a protective layer to inhibit oxygen reduction reaction (ORR) and significantly enhance the stability of NiMo electrodes in intermittent electrolysis. Further, combining experimental and Molecular Dynamics (MD) simulations, we demonstrate that the Cr coating served as a physical barrier inhibiting diffusion of oxygen, while still allowing other species to pass through. Our work offers insights into electrode behavior in intermittent electrolysis, as well as provides Cr coating as a valid method and corresponding deep understanding of the factors for stability enhancement, paving the way for the successful application of lab-scale electrodes in industrial electrolysis powered directly by renewable energy.

8.
Chemosphere ; 306: 135543, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780980

ABSTRACT

Bandgap engineered ferroelectrics exhibit encouraging multi-energy catalytic performance by coupling the piezoelectricity and photoexcitation, which shows immense potential for environmental remediation and fuel production. However, it is challenging to prepare nano single-crystalline ferroelectric piezo-photoelectric with strong visible light absorption ability. Here, Ni mediated NBT-BT(NBT-BNT) single-crystalline nanocubes around 100 nm with considerable visible light absorption were synthesized by a high-temperature hydrothermal method. The mechanism of Ni2+ on the formation of NBT-BT nanocubes was proposed. The catalytic efficiency of NBT-BNT nanocubes is enhanced by decorating carbon quantum dots (CQDs). The RhB can be degraded within 8 min and the hydrogen production rate reaches up to ∼350 µmol g-1h-1 under visible light-ultrasonic condition. Moreover, under the simulated sunlight-ultrasound condition, RhB can be degraded within merely 3 min and a high H2 production rate of ∼747 µmol g-1h-1 is achieved. This work presents a paradigm for preparing ferroelectric single-crystalline nanocatalysts for multi-energy catalytic application.

9.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35894267

ABSTRACT

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

10.
Nat Commun ; 13(1): 2430, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508501

ABSTRACT

Platinum is the most efficient catalyst for hydrogen evolution reaction in acidic conditions, but its widespread use has been impeded by scarcity and high cost. Herein, Pt atomic clusters (Pt ACs) containing Pt-O-Pt units were prepared using Co/N co-doped carbon (CoNC) as support. Pt ACs are anchored to single Co atoms on CoNC by forming strong interactions. Pt-ACs/CoNC exhibits only 24 mV overpotential at 10 mA cm-2 and a high mass activity of 28.6 A mg-1 at 50 mV, which is more than 6 times higher than commercial Pt/C with any Pt loadings. Spectroscopic measurements and computational modeling reveal the enhanced hydrogen generation activity attributes to the charge redistribution between Pt and O atoms in Pt-O-Pt units, making Pt atoms the main active sites and O linkers the assistants, thus optimizing the proton adsorption and hydrogen desorption. This work opens an avenue to fabricate noble-metal-based ACs stabilized by single-atom catalysts with desired properties for electrocatalysis.

11.
Adv Mater ; 34(21): e2110103, 2022 May.
Article in English | MEDLINE | ID: mdl-35384087

ABSTRACT

The development of bifunctional water-splitting electrocatalysts that are efficient and stable over a wide range of pH is of great significance but challenging. Here, an atomically dispersed Ru/Co dual-sites catalyst is reported anchored on N-doped carbon (Ru/Co-N-C) for outstanding oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes. The Ru/Co-N-C catalyst requires the overpotential of only 13 and 23 mV for HER, 232 and 247 mV for OER to deliver a current density of 10 mA cmgeo -2 in 0.5 m H2 SO4 and 1 m KOH, respectively, outperforming benchmark catalysts Pt/C and RuO2 . Theoretical calculations reveal that the introduction of Co-N4 sites into Ru/Co-N-C efficiently modify the electronic structure of Ru by enlarging Ru-O covalency and increasing Ru electron density, which in turn optimize the bonding strength between oxygen/hydrogen intermediate species with Ru sites, thereby enhancing OER and HER performance. Furthermore, the incorporation of Co-N4 sites induces electron redistribution around Ru-N4, thus enhancing corrosion-resistance of Ru/Co-N-C during acid and alkaline electrolysis. The Ru/Co-N-C has been applied in a proton exchange membrane water electrolyzer and steady operation is demonstrated at a high current density of 450 mA cmgeo -2 for 330 h.

12.
Small ; 18(1): e2105082, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34741413

ABSTRACT

Electrochemical generation of hydrogen peroxide (H2 O2 ) is an attractive alternative to the energy-intensive anthraquinone oxidation process. Metal-free carbon-based materials such as graphene show great promise as efficient electrocatalysts in alkaline media. In particular, the graphene edges possess superior electrochemical properties than the basal plane. However, identification and enhancement of the catalytically active sites at the edges remain challenging. Furthermore, control of surface wettability to enhance gas diffusion and promote the performance in bulk electrolysis is largely unexplored. Here, a metal-free edge-rich vertical graphene catalyst is synthesized and exhibits a superior performance for H2 O2 production, with a high onset potential (0.8 V versus reversible hydrogen electrode (RHE) at 0.1 mA cm-2 ) and 100% Faradaic efficiency at various potentials. By tailoring the oxygen-containing functional groups using various techniques of electrochemical oxidation, thermal annealing and oxygen plasma post-treatment, the edge-bound in-plane ether-type (COC) groups are revealed to account for the superior catalytic performance. To manipulate the surface wettability, a simple vacuum-based method is developed to effectively induce material hydrophobicity by accelerating hydrocarbon adsorption. The increased hydrophobicity greatly enhances gas transfer without compromising the Faradaic efficiency, enabling a H2 O2 productivity of 1767 mmol gcatalyst -1 h-1 at 0.4 V versus RHE.

13.
ACS Appl Mater Interfaces ; 13(45): 53798-53809, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730334

ABSTRACT

Electrolytic hydrogen evolution reaction (HER) that can be performed efficiently in neutral conditions enables the direct splitting of seawater. However, the sluggish water dissociation kinetics in neutral media severely limits the practical deployment of this technology. Herein, we present a simple strategy to rationally design oxophilic and nucleophilic moieties through the in situ reconstruction of a free-standing bimetallic cobalt-iron phosphate electrode. Through an electrochemical reduction step, the electrode surface undergoes self-reconstruction to generate a thin (oxy)hydroxide layer, enabling a significantly improved HER activity in both buffered electrolyte and natural seawater. Our mechanistic investigations reveal the essential role of oxophilic (oxy)hydroxide species in improving the HER activity of nucleophilic bimetallic phosphate sites. In a buffer electrolyte (pH = 7), the resultant electrocatalyst only requires overpotentials of 97 and 198 mV to deliver a current density of 10 and 100 mA cm-2, respectively, which outperforms that of the Pt benchmark. The in situ reconstruction strategy of active sites within such electrodes brings significant opportunity in developing active electrocatalysts that are capable of direct seawater splitting.

14.
Chem Asian J ; 16(23): 3999-4005, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34653318

ABSTRACT

We investigated the CO2 adsorption and electrochemical conversion behavior of triazole-based C3 N5 nanorods as a single matrix for consecutive CO2 capture and conversion. The pore size, basicity, and binding energy were tailored to identify critical factors for consecutive CO2 capture and conversion over carbon nitrides. Temperature-programmed desorption (TPD) analysis of CO2 demonstrates that triazole-based C3 N5 shows higher basicity and stronger CO2 binding energy than g-C3 N4 . Triazole-based C3 N5 nanorods with 6.1 nm mesopore channels exhibit better CO2 adsorption than nanorods with 3.5 and 5.4 nm mesopore channels. C3 N5 nanorods with wider mesopore channels are effective in increasing the current density as an electrocatalyst during the CO2 reduction reaction. Triazole-based C3 N5 nanorods with tailored pore sizes exhibit CO2 adsorption abilities of 5.6-9.1 mmol/g at 0 °C and 30 bar. Their Faraday efficiencies for reducing CO2 to CO are 14-38% at a potential of -0.8 V vs. RHE.

15.
Adv Mater ; 33(41): e2102801, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34477254

ABSTRACT

Single-atom catalysts (SACs) have been at the frontier of research field in catalysis owing to the maximized atomic utilization, unique structures and properties. The atomically dispersed and catalytically active metal atoms are necessarily anchored by surrounding atoms. As such, the structure and composition of anchoring sites significantly influence the catalytic performance of SACs even with the same metal element. Significant progress has been made to understand structure-activity relationships at an atomic level, but in-depth understanding in precisely designing highly efficient SACs for the targeted reactions is still required. In this review, various anchoring sites in SACs are summarized and classified into five different types (doped heteroatoms, defect sites, surface atoms, metal sites, and cavity sites). Then, their impacts on catalytic performance are elucidated for electrochemical reactions based on their distance from the metal center (first coordination shell and beyond). Further, SACs anchored on two typical types of hosts, carbon- and metal-based materials, are highlighted, and the effects of anchoring points on achieving the desirable atomic structure, catalytic performance, and reaction pathways are elaborated. At last, insights and outlook to the SAC field based on current achievements and challenges are presented.

16.
Angew Chem Int Ed Engl ; 60(40): 21911-21917, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34309153

ABSTRACT

A considerable amount of platinum (Pt) is required to ensure an adequate rate for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. Thus, the implementation of atomic Pt catalysts holds promise for minimizing the Pt content. In this contribution, atomic Pt sites with nitrogen (N) and phosphorus (P) co-coordination on a carbon matrix (PtNPC) are conceptually predicted and experimentally developed to alter the d-band center of Pt, thereby promoting the intrinsic ORR activity. PtNPC with a record-low Pt content (≈0.026 wt %) consequently shows a benchmark-comparable activity for ORR with an onset of 1.0 VRHE and half-wave potential of 0.85 VRHE . It also features a high stability in 15 000-cycle tests and a superior turnover frequency of 6.80 s-1 at 0.9 VRHE . Damjanovic kinetics analysis reveals a tuned ORR kinetics of PtNPC from a mixed 2/4-electron to a predominately 4-electron route. It is discovered that coordinated P species significantly shifts d-band center of Pt atoms, accounting for the exceptional performance of PtNPC.

17.
ACS Nano ; 15(7): 12006-12018, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34192868

ABSTRACT

In this study, we propose a top-down approach for the controlled preparation of undercoordinated Ni-Nx (Ni-hG) and Fe-Nx (Fe-hG) catalysts within a holey graphene framework, for the electrochemical CO2 reduction reaction (CO2RR) to synthesis gas (syngas). Through the heat treatment of commercial-grade nitrogen-doped graphene, we prepared a defective holey graphene, which was then used as a platform to incorporate undercoordinated single atoms via carbon defect restoration, confirmed by a range of characterization techniques. We reveal that these Ni-hG and Fe-hG catalysts can be combined in any proportion to produce a desired syngas ratio (1-10) across a wide potential range (-0.6 to -1.1 V vs RHE), required commercially for the Fischer-Tropsch (F-T) synthesis of liquid fuels and chemicals. These findings are in agreement with our density functional theory calculations, which reveal that CO selectivity increases with a reduction in N coordination with Ni, while unsaturated Fe-Nx sites favor the hydrogen evolution reaction (HER). The potential of these catalysts for scale up is further demonstrated by the unchanged selectivity at elevated temperature and stability in a high-throughput gas diffusion electrolyzer, displaying a high-mass-normalized activity of 275 mA mg-1 at a cell voltage of 2.5 V. Our results provide valuable insights into the implementation of a simple top-down approach for fabricating active undercoordinated single atom catalysts for decarbonized syngas generation.

18.
Nano Lett ; 21(1): 823-832, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33398997

ABSTRACT

Identification of active sites for highly efficient catalysts at the atomic scale for water splitting is still a great challenge. Herein, we fabricate ultrathin nickel-incorporated cobalt phosphide porous nanosheets (Ni-CoP) featuring an atomic heterometallic site (NiCo16-xP6) via a boron-assisted method. The presence of boron induces a release-and-oxidation mechanism, resulting in the gradual exfoliation of hydroxide nanosheets. After a subsequent phosphorization process, the resultant Ni-CoP nanosheets are implanted with unsaturated atomic heterometallic NiCo16-xP6 sites (with Co vacancies) for alkaline hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The optimized Ni-CoP exhibits a low overpotential of 88 and 290 mV at 10 mA cm-2 for alkaline HER and OER, respectively. This can be attributed to reduced free energy barriers, owing to the direct influence of center Ni atoms to the adjacent Co/P atoms in NiCo16-xP6 sites. These provide fundamental insights on the correlation between atomic structures and catalytic activity.

19.
ACS Nano ; 14(9): 11327-11340, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32790322

ABSTRACT

Engineering the metal-carbon heterointerface has become an increasingly important route toward achieving cost-effective and high-performing electrocatalysts. The specific properties of graphene edge sites, such as the high available density of states and extended unpaired π-bonding, make it a promising candidate to tune the electronic properties of metal catalysts. However, to date, understanding and leveraging graphene edge-metal catalysts for improved electrocatalytic performance remains largely elusive. Herein, edge-rich vertical graphene (er-VG) was synthesized and used as a catalyst support for Ni-Fe hydroxides for the oxygen evolution reaction (OER). The hybrid Ni-Fe/er-VG catalyst exhibits excellent OER performance with a mass current of 4051 A g-1 (at overpotential η = 300 mV) and turnover frequency (TOF) of 4.8 s-1 (η = 400 mV), outperforming Ni-Fe deposited on pristine VG and other metal foam supports. Angle-dependent X-ray absorption spectroscopy shows that the edge-rich VG support can preferentially template Fe-O units with a specific valence orbital alignment interacting with the unoccupied density of states on the graphene edges. This graphene edge-metal interaction was shown to facilitate the formation of undersaturated and strained Fe-sites with high valence states, while promoting the formation of redox-activated Ni species, thus improving OER performance. These findings demonstrate rational design of the graphene edge-metal interface in electrocatalysts which can be used for various energy conversion and chemical synthesis reactions.

20.
Nat Commun ; 11(1): 4181, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32826877

ABSTRACT

Hydrogen peroxide produced by electrochemical oxygen reduction reaction provides a potentially cost effective and energy efficient alternative to the industrial anthraquinone process. In this study, we demonstrate that by modulating the oxygen functional groups near the atomically dispersed cobalt sites with proper electrochemical/chemical treatments, a highly active and selective oxygen reduction process for hydrogen peroxide production can be obtained in acidic electrolyte, showing a negligible amount of onset overpotential and nearly 100% selectivity within a wide range of applied potentials. Combined spectroscopic results reveal that the exceptionally enhanced performance of hydrogen peroxide generation originates from the presence of epoxy groups near the Co-N4 centers, which has resulted in the modification of the electronic structure of the cobalt atoms. Computational modeling demonstrates these electronically modified cobalt atoms will enhance the hydrogen peroxide productivity during oxygen reduction reaction in acid, providing insights into the design of electroactive materials for effective peroxide production.

SELECTION OF CITATIONS
SEARCH DETAIL
...