Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
2.
Cancer Biomark ; 38(3): 393-407, 2023.
Article in English | MEDLINE | ID: mdl-37955080

ABSTRACT

BACKGROUND: Dynein axonemal light intermediate chain 1 (DNALI1) is a component of axonemal dyneins and its role in cancer progression is not known. OBJECTIVE: The influence of DNALI1 expression on the prognosis of low-grade gliomas (LGG) and the possible mechanisms of DNALI1 in promoting the progression of LGG was investigated by applying multiple bioinformatics analyses using datasets from TCGA, GTEx, CPTAC, and CGGA. METHODS: The expression of DNALI1 in different tumor tissues including LGG was investigated. GO functional annotation, KEGG pathway analysis, and GSEA enrichment analysis were performed. The correlation between DNALI1 and prognosis, tumor microenvironment (TME) and immune checkpoints in LGG were assessed. RESULTS: DNALI1 is mainly expressed in malignant cells in the TME of LGG and positively correlated with the development of LGG. DNALI1 expression is negatively correlated with isocitrate dehydrogenase (IDH) mutations and 1p/19q co-deletion. High DNALI1 expression is associated with poor prognosis in LGG. DNALI1 may promote LGG progression through multiple immune-related pathways. The expression of DNALI1 is positively correlated with the infiltration of certain types of immune cells and the expression of some immune checkpoints. CONCLUSIONS: DNALI1 is a potential prognostic marker for LGG, and high expression of DNALI1 may play an important role in maintaining the immunosuppressive microenvironment of LGG.


Subject(s)
Glioma , Humans , Glioma/genetics , Chromosome Aberrations , Computational Biology , Isocitrate Dehydrogenase/genetics , Biomarkers , Tumor Microenvironment/genetics
3.
J Neuroinflammation ; 20(1): 240, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864249

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS: 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aß plaque deposition, pro-inflammatory factors, and the content of Aß in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aß 1-42 (oAß) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAß was traced by immunofluorescence. RESULTS: In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aß) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aß accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aß autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aß degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS: These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aß clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Infant , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Mice, Transgenic
5.
Front Cell Neurosci ; 17: 1189348, 2023.
Article in English | MEDLINE | ID: mdl-37234914

ABSTRACT

Introduction: Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods: CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results: In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion: The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.

6.
Int J Biol Macromol ; 223(Pt A): 36-48, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36336154

ABSTRACT

Microbial infections and the slow regression of inflammation are major impediments to wound healing. Herein, a tilapia fish skin gelatin-fucose gum-tannic acid (Gel&Fuc-TA) hydrogel wound dressing (Gel&Fuc-TA) was designed to promote wound healing by mixing and reacting tannic acid (TA) with tilapia fish skin gelatin (Gel) and fucoidan (Fuc). Gel&Fuc-TA hydrogel has a good network structure as well as swelling and release properties, and shows excellent antibacterial, antioxidant, cell compatibility, and hemostatic properties. Gel&Fuc-TA hydrogel can promote the expression of vascular endothelial growth factor (VEGF), platelet endothelial cell adhesion molecule-1 (CD-31), and alpha-smooth muscle actin (α-SMA), enhance collagen deposition, and accelerate wound repair. Gel&Fuc-TA hydrogel can change the wound microbiome, reduce wound microbiome colonization, and decrease the expression of microbiome-related proinflammatory factors, such as lipopolysaccharide (LPS), Toll-like receptor 2 (TLR2), and Toll-like receptor 4 (TLR4). Gel&Fuc-TA hydrogel effectively regulates the conversion of wound macrophages to the M2 (anti-inflammatory phenotype) phenotype, decreases the expression of interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α), and increases the expression of arginase-1 (Arg-1), interleukin-10 (IL-10) and transforming growth factor-beta (TGF-ß), thereby reducing the inflammatory response. In summary, Gel&Fuc-TA hydrogel prepared using a rational green cross-linking reaction can effectively accelerate wound healing.


Subject(s)
Gelatin , Vascular Endothelial Growth Factor A , Animals , Gelatin/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Anti-Inflammatory Agents/pharmacology , Tannins
7.
Cell Commun Signal ; 20(1): 160, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253854

ABSTRACT

BACKGROUND: High-altitude cerebral edema (HACE) is a serious and potentially fatal brain injury that is caused by acute hypobaric hypoxia (HH) exposure. Vasogenic edema is the main pathological factor of this condition. Hypoxia-induced disruptions of tight junctions in the endothelium trigger blood‒brain barrier (BBB) damage and induce vasogenic edema. Nuclear respiratory factor 1 (NRF1) acts as a major regulator of hypoxia-induced endothelial cell injury, and caveolin-1 (CAV-1) is upregulated as its downstream gene in hypoxic endothelial cells. This study aimed to investigate whether CAV-1 is involved in HACE progression and the underlying mechanism. METHODS: C57BL/6 mice were exposed to HH (7600 m above sea level) for 24 h, and BBB injury was assessed by brain water content, Evans blue staining and FITC-dextran leakage. Immunofluorescence, transmission electron microscope, transendothelial electrical resistance (TEER), transcytosis assays, and western blotting were performed to confirm the role and underlying mechanism of CAV-1 in the disruption of tight junctions and BBB permeability. Mice or bEnd.3 cells were pretreated with MßCD, a specific blocker of CAV-1, and the effect of CAV-1 on claudin-5 internalization under hypoxic conditions was detected by immunofluorescence, western blotting, and TEER. The expression of NRF1 was knocked down, and the regulation of CAV-1 by NRF1 under hypoxic conditions was examined by qPCR, western blotting, and immunofluorescence. RESULTS: The BBB was severely damaged and was accompanied by a significant loss of vascular tight junction proteins in HACE mice. CAV-1 was significantly upregulated in endothelial cells, and claudin-5 explicitly colocalized with CAV-1. During the in vitro experiments, hypoxia increased cell permeability, CAV-1 expression, and claudin-5 internalization and downregulated tight junction proteins. Simultaneously, hypoxia induced the upregulation of CAV-1 by activating NRF1. Blocking CAV-1-mediated intracellular transport improved the integrity of TJs in hypoxic endothelial cells and effectively inhibited the increase in BBB permeability and brain water content in HH animals. CONCLUSIONS: Hypoxia upregulated CAV-1 transcription via the activation of NRF1 in endothelial cells, thus inducing the internalization and autophagic degradation of claudin-5. These effects lead to the destruction of the BBB and trigger HACE. Therefore, CAV-1 may be a potential therapeutic target for HACE. Video abstract.


Subject(s)
Brain Edema , Caveolin 1 , Hypoxia , Animals , Mice , Altitude , Blood-Brain Barrier , Brain Edema/complications , Brain Edema/metabolism , Caveolin 1/metabolism , Claudin-5/metabolism , Endothelial Cells/metabolism , Hypoxia/complications , Hypoxia/metabolism , Mice, Inbred C57BL , Nuclear Respiratory Factor 1/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
8.
J Nanobiotechnology ; 20(1): 426, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153602

ABSTRACT

BACKGROUND: Skin tissue is vital in protecting the body from injuries and bacterial infections. Wound infection caused by bacterial colonization is one of the main factors hindering wound healing. Wound infection caused by colonization of a large number of bacteria can cause the wound to enter a continuous stage of inflammation, which delays wound healing. Hydrogel wound dressing is composed of natural and synthetic polymers, which can absorb tissue fluid, improve the local microenvironment of wound, and promote wound healing. However, in the preparation process of hydrogel, the complex preparation process and poor biological efficacy limit the application of hydrogel wound dressing in complex wound environment. Therefore, it is particularly important to develop and prepare hydrogel dressings with simple technology, good physical properties and biological effects by using natural polymers. RESULTS: In this study, a gelatin-based (Tsg-THA&Fe) hydrogel was created by mixing trivalent iron (Fe3+) and 2,3,4-trihydroxybenzaldehyde (THA) to form a complex (THA&Fe), followed by a simple Schiff base reaction with tilapia skin gelatin (Tsg). The gel time and rheological properties of the hydrogels were adjusted by controlling the number of complexes. The dynamic cross-linking of the coordination bonds (o-phthalmictriol-Fe3+) and Schiff base bonds allows hydrogels to have good self-healing and injectable properties. In vitro experiments confirmed that the hydrogel had good biocompatibility and biodegradability as well as adhesion, hemostasis, and antibacterial properties. The feasibility of Tsg-THA&Fe hydrogel was studied by treating rat skin trauma model. The results showed that compared with Comfeel® Plus Transparent dressing, the Tsg-THA&Fe hydrogel could obvious reduce the number of microorganisms, prevent bacterial colonization, reduce inflammation and accelerate wound healing. Local distribution of the Tsg-THA&Fe hydrogel in the skin tissue did not cause organ toxicity. CONCLUSIONS: In summary, the preparation process of Tsg-THA&Fe hydrogel is simple, with excellent performance in physical properties and biological efficacy. It can effectively relieve inflammation and control the colonization of wound microbes, and can be used as a multi-functional dressing to improve wound healing.


Subject(s)
Hydrogels , Wound Infection , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Inflammation , Iron , Polymers/pharmacology , Rats , Schiff Bases , Wound Healing
9.
Eur J Pharmacol ; 929: 175137, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35793726

ABSTRACT

High-altitude cerebral edema (HACE) is the severe type of acute mountain sickness, which is still lack of effective therapy. This study investigated for the first time the protective effect of mitochondrial division inhibitor-1 (mdivi-1) against cerebral edema induced by simulated high-altitude exposure in mice. It was found that mdivi-1 effectively inhibited phosphorylation of dynamin-related protein-1 (Drp1), reduced expression of AQP4, decreased secretion of IL-6 and TNF-α, and alleviated cerebral edema in mice. In primary cultured astrocytes or microglia, mdivi-1 significantly decreased the hypoxia-induced Drp1 phosphorylation and mitochondrial fragmentation, inhibited the activation of the NF-κB signaling pathway, reduced the secretion of IL-6 and TNF-α. In addition, mdivi-1 inhibited mitochondrial reactive oxygen species (ROS) generation induced by hypoxia in both astrocytes and microglia. When astrocytes were treated with the conditioned medium of microglia exposed to hypoxia (H-MCM), the protein levels of p-Drp1, p-p65, and AQP4 as well as the mRNA levels of IL-6, TNF-α, and IL-1ß in astrocytes were increased. When the mitochondrial components in H-MCM were removed, the influence of microglia on astrocytes under hypoxia was significantly alleviated. Treated with mdivi-1, the integrity of mitochondria released from microglia induced by hypoxia were significantly improved. In conclusion, pharmacological inhibition of mitochondrial division by mdivi-1 alleviated cerebral edema induced by simulated high-altitude exposure in mice. Inhibition of ROS/NF-κB signaling pathway may contribute to the protective effect of mdivi-1. Under hypoxic conditions, mdivi-1 may attenuate the activation of astrocytes by reducing the release of damaged mitochondria from microglia.


Subject(s)
Altitude Sickness , Brain Edema , Altitude , Altitude Sickness/drug therapy , Animals , Brain Edema/drug therapy , Hypoxia/complications , Hypoxia/drug therapy , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Microglia , NF-kappa B/metabolism , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Reactive Oxygen Species , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
10.
J Mol Cell Biol ; 14(5)2022 09 19.
Article in English | MEDLINE | ID: mdl-35704676

ABSTRACT

High-altitude cerebral edema (HACE) is a potentially fatal encephalopathy associated with a time-dependent exposure to the hypobaric hypoxia of altitude. The formation of HACE is affected by both vasogenic and cytotoxic edema. The over-activated microglia potentiate the damage of blood-brain barrier (BBB) and exacerbate cytotoxic edema. In light with the activation of microglia in HACE, we aimed to investigate whether the over-activated microglia were the key turning point of acute mountain sickness to HACE. In in vivo experiments, by exposing mice to hypobaric hypoxia (7000 m above sea level) to induce HACE model, we found that microglia were activated and migrated to blood vessels. Microglia depletion by PLX5622 obviously relieved brain edema. In in vitro experiments, we found that hypoxia induced cultured microglial activation, leading to the destruction of endothelial tight junction and astrocyte swelling. Up-regulated nuclear respiratory factor 1 (NRF1) accelerated pro-inflammatory factors through transcriptional regulation on nuclear factor kappa B p65 (NF-κB p65) and mitochondrial transcription factor A (TFAM) in activated microglia under hypoxia. NRF1 also up-regulated phagocytosis by transcriptional regulation on caveolin-1 (CAV-1) and adaptor-related protein complex 2 subunit beta (AP2B1). The present study reveals a new mechanism in HACE: hypoxia over-activates microglia through up-regulation of NRF1, which both induces inflammatory response through transcriptionally activating NF-κB p65 and TFAM, and enhances phagocytic function through up-regulation of CAV-1 and AP2B1; hypoxia-activated microglia destroy the integrity of BBB and release pro-inflammatory factors that eventually induce HACE.


Subject(s)
Altitude Sickness , Brain Edema , Adaptor Protein Complex 2/metabolism , Altitude , Altitude Sickness/complications , Animals , Brain Edema/complications , Brain Edema/metabolism , Caveolin 1/metabolism , Hypoxia/complications , Mice , Microglia/metabolism , NF-kappa B/metabolism , Nuclear Respiratory Factor 1/metabolism
11.
Med Chem ; 18(1): 130-139, 2022.
Article in English | MEDLINE | ID: mdl-33222676

ABSTRACT

BACKGROUND: Podophyllotoxin is a natural lignan which possesses anticancer and antiviral activities. Etoposide and teniposide are semisynthetic glycoside derivatives of podophyllotoxin and are increasingly used in cancer medicine. OBJECTIVE: The present work aimed to design and synthesize a series of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin as novel anticancer agents. METHODS: A divergent de novo synthesis of 2, 4, 5-trideoxyhexopyranosides derivatives of 4'- demethylepipodophyllotoxin has been established via palladium-catalyzed glycosylation. The abilities of synthesized glycosides to inhibit the growth of A549, HepG2, SH-SY5Y, KB/VCR and HeLa cancer cells were investigated by MTT assay. Flow cytometric analysis of cell cycle with propidium iodide DNA staining was employed to observe the effect of compound 5b on cancer cell cycle. RESULTS: Twelve D and L monosaccharide derivatives 5a-5l have been efficiently synthesized in three steps from various pyranone building blocks employing de novo glycosylation strategy. Dmonosaccharide 5b showed the highest cytotoxicity on five cancer cell lines with the IC50 values ranging from 0.9 to 6.7 µM. It caused HepG2 cycle arrest at G2/M phase in a concentrationdependent manner. CONCLUSION: The present work leads to the development of novel 2, 4, 5-trideoxyhexopyranosides derivatives of 4'-demethylepipodophyllotoxin. The biological results suggest that the replacement of the glucosyl moiety of etoposide with 2, 4, 5-trideoxyhexopyranosyl is favorable to their cytotoxicity. D-monosaccharide 5b was observed to cause HepG2 cycle arrest at the G2/M phase in a concentration- dependent manner.


Subject(s)
Antineoplastic Agents , Podophyllotoxin , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , HeLa Cells , Humans , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/pharmacology , Structure-Activity Relationship
13.
Hypertens Res ; 44(11): 1395-1405, 2021 11.
Article in English | MEDLINE | ID: mdl-34257425

ABSTRACT

Hypertension induced by hypoxia at high altitude is one of the typical symptoms of high-altitude reactions (HARs). Emerging evidence indicates that endothelial abnormalities, including increases in angiotensin-2 (Ang-2) and endothelin-1 (ET-1), are closely associated with hypertension. Thus, low blood oxygen-induced endothelial dysfunction through acceleration of Ang-2 and ET-1 synthesis may alleviate HARs. In this study, we investigated the effects of hypoxia on rat blood pressure (BP) and endothelial injury. We found that BP increased by 10 mmHg after treatment with 10% O2 (~5500 m above sea level) for 24 h. Consistently, serum Ang-2 and ET-1 levels were increased along with decreases in NO levels. In endothelial cells, angiotensin-1-converting enzyme (ACE) and ET-1 expression levels were upregulated. Interestingly, nuclear respiratory factor 1 (NRF1) levels were also upregulated, consistent with the changes in ACE and ET-1 levels. We further demonstrated that NRF1 transcriptionally activated ACE and ET-1 by directly binding to their promoter regions, suggesting that the endothelial cell dysfunction induced by hypoxia was due to NRF1-dependent upregulation of ACE and ET-1. Surprisingly, testosterone supplementation showed significant protective effects on BP, while castration induced even higher BPs in rats exposed to hypoxia. We further showed that physiological testosterone repressed NRF1 expression in vivo and in vitro and thereby reduced Ang-2 and ET-1 levels, which was dependent on hypoxia. In summary, we have identified that physiological testosterone protects against hypoxia-induced hypertension through inhibition of NRF1, which transcriptionally regulates ACE and ET-1 expression.


Subject(s)
Hypertension , Peptidyl-Dipeptidase A , Angiotensin II , Animals , Endothelial Cells , Endothelin-1 , Hypertension/genetics , Hypoxia/complications , Nuclear Respiratory Factor 1/genetics , Peptidyl-Dipeptidase A/genetics , Rats , Testosterone
14.
Chem Biol Drug Des ; 98(4): 674-682, 2021 10.
Article in English | MEDLINE | ID: mdl-34233089

ABSTRACT

Natural diphyllin glycosides were identified as potent vacuolar H+ -ATPase (V-ATPase) inhibitors. A series of diphyllin ß-hydroxyl amino derivatives were designed and synthesized as novel diphyllin derivatives. Most of these derivatives displayed potent cytotoxicity against six cancer cell lines with IC50 values in the submicromolar to nanomolar concentration range. Compounds 2b, 2c, 2l, 2m, and 2n showed similar V-ATPase inhibitory potency to Bafilomycin A1. Compound 2l exhibited potent activity of modulation of lysosomal pH and cytoplasmic pH.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Biological Products/chemical synthesis , Dyphylline/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Apoptosis/drug effects , Biological Products/pharmacology , Cell Line, Tumor , Glycosides/chemistry , Humans , Hydrogen-Ion Concentration , Lysosomes/chemistry , Macrolides/chemical synthesis
15.
Mitochondrion ; 59: 113-122, 2021 07.
Article in English | MEDLINE | ID: mdl-33933661

ABSTRACT

The protective effect of intermittent hypoxia (IH) preconditioning against oxidative injury in hepatic cells was investigated and the involvement of the PINK1/Parkin-mediated mitophagy regulated by nuclear respiratory factor 1 (NRF-1) was evaluated. The results showed that IH preconditioning protected HepG2 cells against oxygen and glucose deprivation/reperfusion (OGD/Rep)-induced injury and protected WRL68 cells against H2O2 or AMA-induced oxidative injury. IH preconditioning up-regulated the protein level of NRF-1, PINK1, Parkin, and LC3 II, promoted the recruitment of the cytosolic Parkin, indicating the initiation of the PINK1/Parkin-mediated mitophagy in WRL68 cells. When NRF-1 was down-regulated by NRF-1 specific shRNA, the protein level of PINK1 and Parkin as well as the mitophagy level were significantly decreased. After IH preconditioning, the protein level of PINK1 and the recruitment of Parkin in CCCP-treated group were significantly higher than that of the control group, indicating the increased mitophagy capacity. And the increased mitophagy capacity induced by IH preconditioning was also reduced by down-regulation of NRF-1. Furthermore, the protective effect of IH preconditioning against H2O2-induced oxidative injury in WRL68 cells was inhibited when NRF-1 or PINK1 was down-regulated by specific shRNA. Mitochondrial ROS generation may be responsible for the increased expression of NRF-1 induced by IH preconditioning. In conclusion, the PINK1/Parkin-mediated mitophagy regulated by NRF-1 was involved in IH preconditioning-induced protective effect against oxidative cellular injury in hepatic cells.


Subject(s)
Hepatocytes/cytology , Ischemic Preconditioning/methods , Nuclear Respiratory Factor 1/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Cytosol/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydrogen Peroxide/adverse effects , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitophagy , Models, Biological , Oxidative Stress , Reactive Oxygen Species/metabolism , Up-Regulation
16.
Biol Trace Elem Res ; 199(1): 267-277, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32215811

ABSTRACT

The liver is contributed to maintaining body iron homeostasis and controlling of body adaptation to fasting. Although previous studies implied a negative relationship between iron and ghrelin in both mice and humans, it remains to be explored whether fasting or ghrelin has a functional effect on iron homeostasis in the liver. In this study, we examined the roles of fasting and ghrelin in modulating the protein expression of Fpn1, transferrin receptor 1 (TfR1), and ferritin light chain (Ft-L), as well as the mRNA expression of ghrelin, hepcidin, ghrelin O-acyltransferase (GOAT), and growth hormone secretagogue receptor 1 alpha (GHSR1α) in mouse liver and cultured hepatocytes. Our in vivo results suggested that fasting significantly upregulated the mRNA expression of ghrelin, GOAT, and GHSR1α, as well as the protein levels of ghrelin, Fpn1, and Ft-L, but not TfR1, in mouse liver. Interestingly, mRNA expression of hepcidin did not change significantly after fasting. Meanwhile, in cultured hepatocytes, ghrelin significantly increased the protein expression of Fpn1 but not Ft-L and TfR1 and significantly enhanced ERK phosphorylation. Furthermore, the pretreatment of cultured hepatocytes with either a pERK inhibitor or a GHSR1α antagonist abolished the effects of ghrelin on Fpn1 expression and ERK phosphorylation. Our findings confirmed that fasting increases iron export in the liver by upregulating Fpn1 expression through the ghrelin/GHSR1α/MAPK signaling pathway.


Subject(s)
Iron , Receptors, Ghrelin , Animals , Cation Transport Proteins , Fasting , Ghrelin , Hepcidins/genetics , Liver , MAP Kinase Signaling System , Mice , Receptors, Ghrelin/genetics
17.
Biomed Res Int ; 2020: 3650935, 2020.
Article in English | MEDLINE | ID: mdl-33354565

ABSTRACT

Ischemic stroke (IS) greatly threatens human health resulting in high mortality and substantial loss of function. Recent studies have shown that the outcome of IS has sex specific, but its mechanism is still unclear. This study is aimed at identifying the sexually dimorphic to peripheral immune response in IS progression, predicting potential prognostic biomarkers that can lead to sex-specific outcome, and revealing potential treatment targets. Gene expression dataset GSE37587, including 68 peripheral whole blood samples which were collected within 24 hours from known onset of symptom and again at 24-48 hours after onset (20 women and 14 men), was downloaded from the Gene Expression Omnibus (GEO) datasets. First, using Bioconductor R package, two kinds of differentially expressed genes (DEGs) (nonsex-specific- and sex-specific-DEGs) were screened by follow-up (24-48 hours) vs. baseline (24 hours). 30 nonsex-specific DEGs (1 upregulated and 29 downregulated), 79 female-specific DEGs (25 upregulated and 54 downregulated), and none of male-specific DEGs were obtained finally. Second, bioinformatics analysis of female-specific DEGs was performed. Gene Ontology (GO) functional annotation analysis shows that DEGs were mainly enriched in translational initiation, cytosolic ribosome, and structural constituent of ribosome. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis shows that the top 6 enrichment pathways are ribosome, nuclear factor--kappa B (NF-kappa B) signaling pathway, apoptosis, mineral absorption, nonalcoholic fatty liver disease, and pertussis. Three functional modules were clustered in the protein-protein interaction (PPI) network of DEGs. The top 10 key genes of the PPI network constructed were selected, including RPS14, RPS15A, RPS24, FAU, RPL27, RPL31, RPL34, RPL35A, RSL24D1, and EEF1B2. Sex difference of ribosome in stroke-induced peripheral immunosuppression may be the potential mechanism of sex disparities in outcome after IS, and women are more likely to have stroke-induced immunosuppression. RPS14, RPS15A, RPS24, FAU, RPL27, RPL31, RPL34, RPL35A, RSL24D1, and EEF1B2 may be novel prognostic biomarkers and potential therapeutic targets for IS.


Subject(s)
Immunosuppression Therapy , Ribosomes/chemistry , Sex Factors , Stroke/metabolism , Adult , Aged , Apoptosis , Biomarkers/metabolism , Computational Biology , Cytosol/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Prognosis , Protein Interaction Mapping , Protein Interaction Maps/genetics , Ribosomes/metabolism , Signal Transduction
18.
Bioorg Chem ; 105: 104382, 2020 12.
Article in English | MEDLINE | ID: mdl-33137558

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive accumulation of senile plaques, which are primarily composed of misfolded amyloid ß-peptide (Aß). Aß aggregates are believed to be a key factor in the pathogenesis of AD, affecting the nervous system in human body. The therapeutic potential of tea-derived polyphenolic compounds, (-)-epigallocatechin (EGC) and (-)-epicatechin-3-gallate (ECG), for AD was investigated by assessing their effects on the Cu2+/Zn2+-induced or self-assembled Aß40 aggregation using thioflavine T fluorescent spectrometry, inductively coupled plasma mass spectrometry, UV-Vis spectroscopy, transmission electron microscope, silver staining, immunohistochemistry, and immunofluorescence assays. EGC and ECG mildly bind to Cu2+ and Zn2+, and diminish the Cu2+- or Zn2+-induced or self-assembled Aß aggregates; they also modulate the Cu2+/Zn2+-Aß40 induced neurotoxicity on mouse neuroblastoma Neuro-2a cells by reducing the production of ROS. Metal chelating, hydrogen bonding or Van Der Waals force may drive the interaction between the polyphenolic compounds and Aß. The results demonstrate that green tea catechins EGC and ECG are able to alleviate the toxicity of Aß oligomers and fibrils. Particularly, ECG can cross the blood-brain barrier to reduce the Aß plaques in the brain of APP/PS1 mice, thereby protecting neurons from injuries. The results manifest the potential of green tea for preventing or ameliorating the symptoms of AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Catechin/analogs & derivatives , Protein Aggregation, Pathological/drug therapy , Tea/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Catechin/chemistry , Catechin/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Structure-Activity Relationship
19.
Pharmacol Rep ; 72(1): 188-198, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32016834

ABSTRACT

BACKGROUND: Cleistanthin A (CleA), a natural diphyllin glycoside, has been shown to suppress the invasion of cancer cells, but the underlying mechanisms remain unclear. Here, the inhibitory effect of CleA on the invasion of MDA-MB-231 human breast cancer cells was investigated, and the mechanisms involved were clarified. METHODS: Cell viability was studied by MTT assay. The migration and invasion of MDA-MB-231 cells were assessed by wound healing assay and transwell assay, respectively. The enzymatic activity of matrix metalloproteinases (MMPs) was detected by gelatin zymography. mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Nuclear translocation of ß-catenin was observed by immunofluorescence and detected by Western blotting. RESULTS: CleA effectively inhibited the migration and invasion of MDA-MB-231 cells and suppressed the expression and activation of MMP-2/9. Moreover, the expression and nuclear translocation of ß-catenin were reduced by CleA treatment, as well as transcription of the Cyclin D1 and c-myc genes. In addition, the inhibitory effect of CleA on the ß-catenin pathway was attributed to the promotion of ß-catenin degradation by inhibition of GSK3ß phosphorylation. When the phosphorylation of GSK3ß was induced by LiCl, the inhibitory effect of CleA on the ß-catenin pathway and the invasion of MDA-MB-231 cells were almost reversed. CONCLUSION: CleA suppressed the invasion of MDA-MB-231 cells, likely through the ß-catenin pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Glycosides/pharmacology , Lignans/pharmacology , beta Catenin/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness/prevention & control
20.
Mitochondrion ; 51: 22-29, 2020 03.
Article in English | MEDLINE | ID: mdl-31862413

ABSTRACT

Previous studies have demonstrated that two Parkinson'sdisease-associatedgenes PINK1 and Parkin play a key role in mitochondrial quality control. But until now, the transcriptional regulation of these two genes under normal physiological conditions are not well understood. In this study, the transcriptional regulation of PINK1 and Parkin genes by nuclear respiratory factor 1 (NRF-1) and its effect on PINK1/Parkin-mediated mitophagy were studied. The NRF-1 binding sites in the promoter regions of human PINK1 and Parkin genes were analyzed by JASPER software and were confirmed by chromatin immunoprecipitation (ChIP) assay. The transcriptional activities and the expressions of PINK1 and Parkin genes were positively regulated by NRF-1 in HEK293T cells and in SH-SY5Y cells. Furthermore, NRF-1 over-expression (OE) up-regulated the protein level of full-length PINK1 in CCCP-treated cells, indicating the enhanced PINK1/Parkin-mediated mitophagy. When NRF-1 expression was transient orstableknockdown, the CCCP-induced mitophagy was alleviated as characterized by the reduced protein level of full-length PINK1, the declined ratio of LC3 II to LC3 I, and the decreasedratioof Mt-keimafluorescenceintensityexcited at 552 nm to that excited at 488 nm. In conclusion, NRF-1 has a positive regulatory effect on the transcription of PINK1 and Parkin genes, and involves in mitochondrial quality control through regulating PINK1/Parkin-mediated mitophagy.


Subject(s)
Gene Expression Regulation/genetics , Mitochondria/metabolism , Nuclear Respiratory Factor 1/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Binding Sites/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Line, Tumor , Computational Biology/methods , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mitophagy/drug effects , Mitophagy/genetics , Nuclear Respiratory Factor 1/genetics , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...