Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(1): 318-323, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38205026

ABSTRACT

The mechanism(s) of alternating PLGA synthesis by ring-opening polymerization of (S)- and (R)-3-methyl glycolide promoted by enantiopure aluminum complexes have been rationalized by density functional theory (DFT) calculations. The high regioselectivity of the (S)-MeG polymerization is obtained by repetitive ring opening at the glycolyl site by the (R)-catalyst whereas a lower regioselectivity is predicted by the ROP of (R)-MeG. The behavior of the two monomers is rationalized by unveiling the active site fluxionality of the enantiopure catalyst, identifying the rate-limiting steps that encode a preference at the glycolyl site versus the lactyl site, and revealing selection of the opposite monomer enantioface. The microstructure of the PLGA copolymers is predicted by considering the influence of the configuration of the last inserted unit. The identification of the preferred mechanistic paths may allow for a targeted catalyst design to enhance control of the polymer microstructures.

2.
J Am Chem Soc ; 145(41): 22425-22432, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37793193

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) is used in vivo for various biomedical applications. Due to its biodegradability and biocompatibility, PLGA is uniquely suited for controlled drug delivery with parenteral administration. Previously, we established the synthesis of isotactic, alternating PLGA from enantiopure starting materials. Here, to fill in the gap of the current field, we have developed the synthesis of syndioenriched, alternating PLGA from racemic methyl-glycolide (rac-MeG). The synthesis of alternating PLGA is accomplished by a highly regioselective ring-opening polymerization of rac-MeG with an optimized racemic aluminum catalyst. Mechanistic studies are carried out to elucidate the pairing-enhanced catalyst regio- and stereocontrol. Polymer sequence fidelity has been established by NMR investigations, confirming a high degree of alternation of the comonomer sequence and moderate syndiotacticity within the backbone stereoconfiguration. The resulting syndioenriched material is amorphous, which will facilitate the drug complexation behavior.


Subject(s)
Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Glycols , Drug Delivery Systems
3.
J Am Chem Soc ; 144(18): 8362-8370, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35476538

ABSTRACT

Stereocomplexation is a useful strategy for the enhancement of polymer properties by the co-crystallization of polymer strands with opposed chirality. Yet, with the exception of PLA, stereocomplexes of biodegradable polyesters are relatively underexplored and the relationship between polymer microstructure and stereocomplexation remains to be delineated, especially for copolymers comprising two different chiral monomers. In this work, we resolved the two enantiomers of a non-symmetric chiral anhydride (CPCA) and prepared a series of polyesters from different combinations of racemic and enantiopure epoxides and anhydrides, via metal-catalyzed ring-opening copolymerization (ROCOP). Intriguingly, we found that only specific chiral combinations between the epoxide and anhydride building blocks result in the formation of semicrystalline polymers, with a single stereocenter inversion inducing a change from amorphous to semicrystalline copolymers. Stereocomplexes of the latter were prepared by mixing an equimolar amount of the two enantiomeric copolymers, yielding materials with increased melting temperatures (ca. 20 °C higher) compared to their enantiopure constituents. Following polymer structure optimization, the stereocomplex of one specific copolymer combination exhibits a particularly high melting temperature (Tm = 238 °C).


Subject(s)
Polyesters , Polymers , Anhydrides , Epoxy Compounds/chemistry , Polyesters/chemistry , Polymerization , Polymers/chemistry
4.
J Am Chem Soc ; 143(11): 4119-4124, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33687202

ABSTRACT

We report the synthesis of alternating poly(lactic-co-glycolic acid) via a regioselective ring-opening polymerization of (S)-methyl glycolide. An enantiopure aluminum salen catalyst with binaphthyl backbone facilitates the regioselective ring-opening of this unsymmetrical cyclic diester exclusively at the glycolide acyl-oxygen bond site. This living, chain-growth polymerization is able to reach low dispersities with tailored molecular weights. Quantitative regioselectivity calculations and sequence error analysis have been established for this sequence-controlled polymer.

5.
Org Lett ; 22(6): 2437-2441, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32142302

ABSTRACT

Enantioselective incorporation of trifluoromethyl (-CF3) and trifuoromethylthio (-SCF3) groups in small molecules is of high interest to modulate the potency and pharmacological properties of drug candidates. Herein, we report a Zn-ProPhenol catalyzed diastereo- and enantioselective Mannich addition of α-trifluoromethyl- and α-trifuoromethylthio-substituted ketones. This transformation uses cyclic and acyclic ketones and generates quaternary trifluoromethyl and tetrasubstituted trifuoromethylthio stereogenic centers in excellent yields and selectivities.

6.
Biopolymers ; 86(5-6): 403-8, 2007.
Article in English | MEDLINE | ID: mdl-17440902

ABSTRACT

Chitosan-g-PCL-b-MPEG copolymers of various compositions were successful synthesized via a protection-graft-deprotection procedure, by the esterification of phthaloyl-protected chitosan (PHCS) with MPEG-b-PCL-COOH, which was synthesized from MPEG and epsilon-caprolactone and carboxylated by maleic anhydride. The chemical structure of the chitosan-g-PCL-b-MPEG was characterized by Fourier transform infrared and NMR spectroscopy. The chitosan-g-PCL-b-MPEG was obtained as amphoteric hybrid with amino polysaccharide backbone and amphiphilic MPEG-b-PCL side chain. Their crystallinity and aggregation behavior in aqueous solution were also investigated.


Subject(s)
Chitosan/analogs & derivatives , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Chitosan/chemical synthesis , Chitosan/chemistry , Drug Delivery Systems , Magnetic Resonance Spectroscopy , Molecular Structure , Polyesters/chemistry , Polyethylene Glycols/chemistry , Powder Diffraction , Solutions , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...