Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Adv Sci (Weinh) ; : e2400185, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896792

ABSTRACT

In vitro models coupled with multimodal approaches are needed to dissect the dynamic response of local tumor immune microenvironment (TIME) to immunotherapy. Here the patient-derived primary lung cancer organoids (pLCOs) are generated by isolating tumor cell clusters, including the infiltrated immune cells. A function-associated single-cell RNA sequencing (FascRNA-seq) platform allowing both phenotypic evaluation and scRNA-seq at single-organoid level is developed to dissect the TIME of individual pLCOs. The analysis of 171 individual pLCOs derived from seven patients reveals that pLCOs retain the TIME heterogeneity in the parenchyma of parental tumor tissues, providing models with identical genetic background but various TIME. Linking the scRNA-seq data of individual pLCOs with their responses to anti-PD-1 (αPD-1) immune checkpoint blockade (ICB) allows to confirm the central role of CD8+ T cells in anti-tumor immunity, to identify potential tumor-reactive T cells with a set of 10 genes, and to unravel the factors regulating T cell activity, including CD99 gene. In summary, the study constructs a joint phenotypic and transcriptomic FascRNA-seq platform to dissect the dynamic response of local TIME under ICB treatment, providing a promising approach to evaluate novel immunotherapies and to understand the underlying molecular mechanisms.

2.
Iran J Med Sci ; 48(4): 401-413, 2023 07.
Article in English | MEDLINE | ID: mdl-37456201

ABSTRACT

Background: Pancreatic cancer is a malignancy with high mortality due to the difficulties in early detection. We investigated and compared the diagnostic and prognostic performance of several blood biomarkers, including microRNA-25 (miR-25), carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), and carbohydrate antigen 125 (CA125). Methods: A retrospective study was conducted at the Chinese People's Liberation Army General Hospital from May 2014 to September 2018. Serum specimens were collected, and miR-25 expression levels were measured using real-time quantitative polymerase chain reaction. Serum CA19-9, CEA, and CA125 levels were measured using enzyme-linked immunosorbent assay (ELISA). Statistical analyses including nonparametric test, receiver operator characteristic (ROC) curves, Kaplan-Meier analysis, and subsequent log-rank test were performed with PRISM 5.0 software. Univariate and multivariate analyses were performed with the R software. P<0.05 was considered statistically significant. Results: A total of 250 individuals were recruited, including 75 with pancreatic ductal adenocarcinoma (PDAC), 75 with benign lesions, and 100 healthy controls. miR-25, CA19-9, CEA, and CA125 exhibited an area under the curve (AUC) of 0.88, 0.91, 0.81, and 0.76 with a sensitivity of 78.7%, 74.7%, 37.3%, and 35.7% and specificity of 91.5%, 97.0%, 98.2%, and 98.3%, respectively. The combination of miR-25 and CA19-9 further increased the sensitivity to 93.3% with a specificity of 88.5%. Stage-dependent sensitivity was observed with CA19-9, CEA, and CA125. miR-25 levels significantly stratified the prognosis by median level (4,989.97 copies/mL). CA19-9, CEA, and CA125 levels significantly stratified the prognosis by median levels. Univariate and subsequent multivariate analyses identified tumor (T) stage, CA19-9, and CA125 as independent risk factors for PDAC prognosis. Conclusion: The combination of miR-25 and CA19-9 significantly enhanced the detection sensitivity of PDAC. T stage, CA19-9, and CA125 levels were independent risk factors for PDAC prognosis.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Carcinoembryonic Antigen , CA-19-9 Antigen , Prognosis , Biomarkers, Tumor , Retrospective Studies , CA-125 Antigen , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Carbohydrates , Pancreatic Neoplasms
3.
Front Oncol ; 12: 1038380, 2022.
Article in English | MEDLINE | ID: mdl-36531022

ABSTRACT

Background: A feasible method to detect somatic copy number deletion (SCND) of genes is still absent to date. Methods: Interstitial base-resolution deletion/fusion coordinates for CDKN2A were extracted from published articles and our whole genome sequencing (WGS) datasets. The copy number of the CDKN2A gene was measured with a quantitative multiplex PCR assay P16-Light and confirmed with whole genome sequencing (WGS). Results: Estimated common deletion regions (CDRs) were observed in many tumor suppressor genes, such as ATM, CDKN2A, FAT1, miR31HG, PTEN, and RB1, in the SNP array-based COSMIC datasets. A 5.1 kb base-resolution CDR could be identified in >90% of cancer samples with CDKN2A deletion by sequencing. The CDKN2A CDR covers exon-2, which is essential for P16INK4A and P14ARF synthesis. Using the true CDKN2A CDR as a PCR target, a quantitative multiplex PCR assay P16-Light was programmed to detect CDKN2A gene copy number. P16-Light was further confirmed with WGS as the gold standard among cancer tissue samples from 139 patients. Conclusion: The 5.1 kb CDKN2A CDR was found in >90% of cancers containing CDKN2A deletion. The CDKN2A CDR was used as a potential target for developing the P16-Light assay to detect CDKN2A SCND and amplification for routine clinical practices.

4.
iScience ; 25(12): 105681, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36536675

ABSTRACT

The overall survival rate of gliomas has not significantly improved despite new effective treatments, mainly due to tumor heterogeneity and drug delivery. Here, we perform an integrated clinic-genomic analysis of 1, 477 glioma patients from a Chinese cohort and a TCGA cohort and propose a potential prognostic model for gliomas. We identify that SBS11 and SBS23 mutational signatures are associated with glioma recurrence and indicate worse prognosis only in low-grade type of gliomas and IDH-Mut subtype. We also identify 42 genomic features associated with distinct clinical outcome and successfully used ten of these to develop a prognostic risk model of gliomas. The high-risk glioma patients with shortened survival were characterized by high level of frequent copy number alterations including PTEN, CDKN2A/B deletion, EGFR amplification, less IDH1 or CIC gene mutations, high infiltration levels of immunosuppressive cells and activation of G2M checkpoint and Oxidative phosphorylation oncogenic pathway.

5.
Front Med (Lausanne) ; 9: 828370, 2022.
Article in English | MEDLINE | ID: mdl-35433731

ABSTRACT

Objective: To evaluate the clinical efficacy and safety of hydrogen inhalation in improving hearing loss in patients with long-term survival of nasopharyngeal carcinoma after radiotherapy. Methods: The eustachian tube dysfunction score, pure tone air conduction threshold, bone conduction threshold, the score of tympanogram and otoscope were prospectively observed in patients with deafness after radiotherapy only or combined radiotherapy and chemotherapy for nasopharyngeal carcinoma. Paired t test and one-way analysis of variance were used to analyze the data before and after treatment. Results: A total of 17 patients were observed. The median time from radiotherapy to now was 228 months, and the median time from the diagnose of deafness to now was 92 months. After 4 weeks of hydrogen inhalation, the score of eustachian tube dysfunction, air conduction and bone conduction hearing thresholds were significantly reduced, P values were 0.0293, 0.0027, 0.0404, respectively. The mean air-bone gap, the score of otoendoscopy and tympanogram were also decreased, but the differences were not significant (P = 0.2079, P = 0.0536, P = 0.1056). Patients with radiotherapy alone and concurrent chemo-radiotherapy had significantly lower air conduction hearing threshold after hydrogen absorption (P = 0.0142, P = 0.0495). The results of air and bone hearing thresholds before, 4 and 12 weeks after hydrogen inhalation showed a descending trend. The air and bone hearing thresholds before hydrogen inhalation were 74.69 ± 27.03 dB and 45.70 ± 21.58 dB, respectively. At the 12th week, the mean values of air and bone hearing thresholds were the lowest, which were 66.88 ± 20.88 dB and 40.94 ± 18.93 dB, respectively, but there was no significant difference in air and bone hearing thresholds among all groups (P = 0.6755, P = 0.7712). After hydrogen inhalation treatment, no adverse reactions such as nosebleed, chest pain, dyspnea, nausea, vomiting, dizziness, earache and allergic reaction were observed. Conclusion: This is the first prospective study on the effect of hydrogen inhalation on hearing improvement in patients with deafness after radiotherapy/chemotherapy for nasopharyngeal carcinoma, suggesting that continuous hydrogen inhalation may be an alternative rehabilitation therapy for these patients.

6.
Gut ; 71(2): 238-253, 2022 02.
Article in English | MEDLINE | ID: mdl-34836916

ABSTRACT

OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.


Subject(s)
Family Health , Helicobacter Infections/prevention & control , Helicobacter pylori , Infection Control/organization & administration , Adolescent , Adult , Aged , Child , Child, Preschool , China , Consensus , Delphi Technique , Helicobacter Infections/diagnosis , Helicobacter Infections/transmission , Humans , Infant , Middle Aged , Young Adult
7.
Sci Rep ; 11(1): 22042, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764391

ABSTRACT

The mutation of SARS-CoV-2 influences viral function as residue replacements affect both physiochemical properties and folding conformations. Although a large amount of data on SARS-CoV-2 is available, the investigation of how viral functions change in response to mutations is hampered by a lack of effective structural analysis. Here, we exploit the advances of protein structure fingerprint technology to study the folding conformational changes induced by mutations. With integration of both protein sequences and folding conformations, the structures are aligned for SARS-CoV to SARS-CoV-2, including Alpha variant (lineage B.1.1.7) and Delta variant (lineage B.1.617.2). The results showed that the virus evolution with change in mutational positions and physicochemical properties increased the affinity between spike protein and ACE2, which plays a critical role in coronavirus entry into human cells. Additionally, these structural variations impact vaccine effectiveness and drug function over the course of SARS-CoV-2 evolution. The analysis of structural variations revealed how the coronavirus has gradually evolved in both structure and function and how the SARS-CoV-2 variants have contributed to more severe acute disease worldwide.


Subject(s)
COVID-19/virology , Evolution, Molecular , Mutation , SARS-CoV-2/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Folding , Protein Interaction Maps , Protein Multimerization , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Res Sq ; 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34545355

ABSTRACT

The mutation of SARS-CoV-2 influences viral function as residue replacements affect both physiochemical properties and folding conformations. Although a large amount of data on SARS-CoV-2 is available, the investigation of how viral functions change in response to mutations is hampered by a lack of effective structural analysis. Here, we exploit advances in protein structure fingerprint technology to study the folding conformational changes induced by mutations. With the integration of both protein sequences and folding conformations and alignments of SARS-CoV to SARS-CoV-2, the UK variant and India variant, we found that structural variations in the spike protein at the binding interface interacting with ACE2 play a critical role in coronavirus entry into human cells. Additionally, the structural variations impact vaccine effectiveness and drug function over the course of SARS-CoV-2 evolution. The analysis of structural variations revealed how the coronavirus has gradually evolved in both structure and function and how the SARS-CoV-2 variants have contributed to more severe acute disease worldwide.

9.
Gastric Cancer ; 24(2): 314-326, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33111209

ABSTRACT

BACKGROUND: Hydrogen/potassium ATPase ß (ATP4B) is a proton pump acting an essential role in gastric acid secretion. This study aimed to investigate the diagnostic performance of ATP4B and its biological role in tumor progression in gastric cancer. METHODS: The correlations between ATP4B expression level and clinicopathologic parameters, as well as the relevance of ATP4B expression with overall survival were assessed. The functional roles of ATP4B in gastric cancer were verified by gain- and loss-of-function cell models and tumor xenograft models. The possible downstream effects of ATP4B were analyzed by iTRAQ-based quantitative proteomics analysis. RESULTS: A dramatic decrease in ATP4B was associated with malignant transformation in gastric mucosa lesions and correlated with poor differentiation. Restoration of ATP4B expression in gastric cancer cells significantly suppressed cell proliferation, cell viability, migration, invasion, tumorigenicity and induced apoptosis, whereas ATP4B silencing exerted the opposite effects. Mechanistically, we found a quality control on mitochondrial metabolism and functions in ATP4B-overexpression GC cells. CONCLUSIONS: Our data suggest that decreasing ATP4B is an indicator for gastric mucosa malignant transformation and GC aggressive phenotype and it plays an inhibitory role in gastric cancer as a tumor suppressor via regulating mitochondrial metabolism and apoptosis pathway.


Subject(s)
Gastric Mucosa/pathology , Gastritis, Atrophic/genetics , Genes, Tumor Suppressor/physiology , Plasma Membrane Calcium-Transporting ATPases/metabolism , Stomach Neoplasms/genetics , Atrophy , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Female , Gastric Mucosa/enzymology , Humans , Male , Middle Aged , Phenotype , Prognosis
10.
Med Gas Res ; 10(4): 149-154, 2020.
Article in English | MEDLINE | ID: mdl-33380580

ABSTRACT

Following standard treatments, the traditional model for enhancing anti-tumor immunity involves performing immune reconstitution (e.g., adoptive immune cell therapies or immunoenhancing drugs) to prevent recurrence. For patients with advanced non-small cell lung cancer, we report here on two objectives, the immunosenescence for advanced non-small cell lung cancer and hydrogen gas inhalation for immune reconstitution. From July 1st to September 25th, 2019, 20 non-small cell lung cancer patients were enrolled to evaluate the immunosenescence of peripheral blood lymphocyte subsets, including T cell, natural killer/natural killer T cell and gamma delta T cell. Two weeks of hydrogen inhalation was performed during the waiting period for treatment-related examination. All patients inhaled a mixture of hydrogen (66.7%) and oxygen (33.3%) with a gas flow rate of 3 L/min for 4 hours each day. None of the patients received any standard treatment during the hydrogen inhalation period. After pretreatment testing, major indexes of immunosenescence were observed. The abnormally higher indexes included exhausted cytotoxic T cells, senescent cytotoxic T cells, and killer Vδ1 cells. After 2 weeks of hydrogen therapy, the number of exhausted and senescent cytotoxic T cells decreased to within the normal range, and there was an increase in killer Vδ1 cells. The abnormally lower indexes included functional helper and cytotoxic T cells, Th1, total natural killer T cells, natural killer, and Vδ2 cells. After 2 weeks of hydrogen therapy, all six cell subsets increased to within the normal range. The current data indicate that the immunosenescence of advanced non-small cell lung cancer involves nearly all lymphocyte subsets, and 2 weeks of hydrogen treatment can significantly improve most of these indexes. The study was approved by the Ethics Committee of Fuda Cancer Hospital, Jinan University in China (approval No. Fuda20181207) on December 7th, 2018, and was registered on ClinicalTrials.gov (ID: NCT03818347) on January 24th, 2019.


Subject(s)
Adaptive Immunity/drug effects , Carcinoma, Non-Small-Cell Lung/immunology , Hydrogen/administration & dosage , Hydrogen/pharmacology , Immunity, Innate/drug effects , Lung Neoplasms/immunology , Administration, Inhalation , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged
11.
Med Gas Res ; 10(3): 130-133, 2020.
Article in English | MEDLINE | ID: mdl-33004711

ABSTRACT

The use of hydrogen for cancer control has made great progress in cytology and animal experiments. With the increasing number of hydrogen products on the market, larger numbers of advanced cancer patients have participated in clinical trials or received treatment at home after purchase. Our study reported a real-world survey from 82 patients with good cancer control using hydrogen products, including real world evidence from patients who received ineffective traditional treatment, patients who received traditional treatment that failed, or patients who refused traditional treatment. Two typical cases were reported herein. Subsequently, we included studies on the mechanism of hydrogen oncology. The mechanism of cancer control using hydrogen includes the inhibition of tumor cells and the activation of exhausted lymphocytes. Large-scale real world evidence has shown clinical value, and yet remains to be further developed and researched.


Subject(s)
Hydrogen/chemistry , Neoplasms/therapy , Adult , Aged , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Hydrogen/administration & dosage , Hydrogen/metabolism , Lymphocytes/metabolism , Medical Oncology , Signal Transduction , Surveys and Questionnaires
12.
Onco Targets Ther ; 13: 8475-8493, 2020.
Article in English | MEDLINE | ID: mdl-32922036

ABSTRACT

BACKGROUND: Gastrin (GAST) is a well-known hormone regulating gastric biofunctions in the secretion of acid and maintaining its structural integrity. Furthermore, the dysregulation of GAST is also involved in the development of various forms of cancer. However, there are some limitations for illustrating the cellular regulation of GAST and its regulatory mechanisms in gastric malignant transformation and the potential epigenetic regulators systematically. METHODS: We explored the role of GAST expression in gastric cancer (GC) and normal tissues with the clinical features and investigated the potential relationship between GAST and STAT3/MMP11 pathway by gain or loss of function analyses. Besides, based on our microRNA/mRNA expression profiles, miR-30a-3p was the potential epigenetic regulator and additional experiments were performed to identify the hypothesis. RESULTS: Elevated GAST expression was frequently detected in GC and was associated with worse outcomes (p<0.001). And we firstly demonstrated that GAST was negatively regulated by miR-30a-3p. Moreover, GAST induced GC cell proliferation, migration and invasion mediating STAT3/MMP11 pathway in this study. CONCLUSION: MiR-30a-3p was the promising suppressor gene through negatively regulating the expression of GAST, and dysregulation of GAST was a prognostic signature associated cell proliferation and metastasis through STAT3/MMP11 pathway in GC.

13.
Med Gas Res ; 10(2): 75-80, 2020.
Article in English | MEDLINE | ID: mdl-32541132

ABSTRACT

Chemotherapy, targeted therapy, and immunotherapy are used against advanced non-small cell lung cancer. A clinically efficacious method for relieving the adverse events associated of such therapies is lacking. Fifty-eight adult patients were enrolled in our trial to relieve pulmonary symptoms or the adverse events of drugs. Twenty patients who refused drug treatment were assigned equally and randomly to a hydrogen (H2)-only group and a control group. According to the results of tumor-gene mutations and drug-sensitivity tests, 10, 18, and 10 patients were enrolled into chemotherapy, targeted therapy, and immunotherapy groups in which these therapies were combined with H2-therapy, respectively. Patients underwent H2 inhalation for 4-5 hours per day for 5 months or stopped when cancer recurrence. Before study initiation, the demographics (except for tumor-mutation genes) and pulmonary symptoms (except for moderate cough) of the five groups showed no significant difference. During the first 5 months of treatment, the prevalence of symptoms of the control group increased gradually, whereas that of the four treatment groups decreased gradually. After 16 months of follow-up, progression-free survival of the control group was lower than that of the H2-only group, and significantly lower than that of H2 + chemotherapy, H2 + targeted therapy, and H2 + immunotherapy groups. In the combined-therapy groups, most drug-associated adverse events decreased gradually or even disappeared. H2 inhalation was first discovered in the clinic that can be used to control tumor progression and alleviate the adverse events of medications for patients with advanced non-small cell lung cancer. This study was approved by the Ethics Committee of Fuda Cancer Hospital of Jinan University on December 7, 2018 (approval No. Fuda20181207), and was registered at ClinicalTrials.gov (Identifier: NCT03818347) on January 28, 2019.


Subject(s)
Antineoplastic Agents/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Disease Progression , Hydrogen/therapeutic use , Lung Neoplasms/drug therapy , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Hydrogen/administration & dosage , Lung Neoplasms/pathology , Male , Middle Aged
14.
J Exp Clin Cancer Res ; 38(1): 283, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262330

ABSTRACT

BACKGROUND: Mucins are key components of the mucosal barrier in the stomach that protects epithelia from carcinogenic effects of chronic inflammation. Analysis of The Cancer Genome Atlas database indicated that mucin-17 (MUC17) was more highly expressed in gastric cancer (GC) specimens, with favourable prognosis for patients. To explore the underlying mechanisms, we investigated the potential role of MUC17 in controlling chronic gastric inflammation. METHODS: We initially quantified the expression of MUC17 and inflammatory factor, as well as the association of MUC17 with survive in GC using immunohistochemistry. To establish how the inflammatory factors affect MUC17 expression, we explored luciferase reporter, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift (EMSA) assays. The role and mechanism that MUC17 plays in inflammation-induced cell proliferation was examined in AGS cells with reduced MUC17 expression and MKN45 cells overexpressing a truncated MUC17. RESULTS: We found MUC17 was induced by inflammatory cytokines in GC cells via CDX1upregulation. MUC17 thus inactivated NFκB to inhibit GC cell proliferation in response to pro-inflammatory cytokines. We also revealed that the function of MUC17 was dependent on its conserved epidermal growth factor domain and on downstream sequences to enable its interaction with myosin-9, resulting in a sustained regulatory feedback loop between myosin-9, p53, and RhoA, and then activation of p38 to negatively regulate the NFκB pathway in GC cells. This mechanism was also confirmed in vivo. CONCLUSIONS: Our study demonstrates MUC17 as a GC suppressor protein which has the therapeutic potential for human GC.


Subject(s)
Molecular Motor Proteins/metabolism , Mucins/metabolism , Myosin Heavy Chains/metabolism , Stomach Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Disease Progression , Feedback, Physiological , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Homeodomain Proteins/metabolism , Humans , Inflammation/metabolism , Interleukin-8/metabolism , Mice , Mucins/genetics , NF-kappa B/metabolism , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Nat Commun ; 10(1): 2037, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31048690

ABSTRACT

Genome-wide analysis of genomic signatures might reveal novel mechanisms for gastric cancer (GC) tumorigenesis. Here, we analysis structural variations (SVs) and mutational signatures via whole-genome sequencing of 168 GCs. Our data demonstrates diverse models of complex SVs operative in GC, which lead to high-level amplification of oncogenes. We find varying proportion of tandem-duplications (TDs) among individuals and identify 24 TD hotspots involving well-established cancer genes such as CCND1, ERBB2 and MYC. Specifically, we nominate a novel hotspot involving the super-enhancer of ZFP36L2 presents in approximately 10% GCs from different cohorts, the oncogenic role of which is further confirmed by experimental data. In addition, our data reveal a mutational signature, specifically occurring in noncoding region, significantly enriched in tumors with cadherin 1 mutations, and associated with poor prognoses. Collectively, our data suggest that TDs might serve as an important mechanism for cancer gene activation and provide a novel signature for stratification.


Subject(s)
Oncogenes/genetics , Stomach Neoplasms/genetics , Transcription Factors/genetics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Antigens, CD/genetics , Cadherins/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Exons/genetics , Female , Gene Duplication/genetics , Genomic Structural Variation , Humans , Male , Middle Aged , Prognosis , Stomach/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Survival Analysis , Whole Genome Sequencing
16.
Cancer Biol Ther ; 20(7): 1017-1028, 2019.
Article in English | MEDLINE | ID: mdl-30983515

ABSTRACT

Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited intestinal polyposis syndrome accounting for about 1% of colorectal cancers (CRC). Despite increasing researches on the molecular pathogenesis of CRC, we are still unclear about metabolic pathways and alterations probably involved in the development of CRC. To obtain new insights into the mechanisms underlying APC mutation and to elucidate the mechanisms of CRC development, we performed to identify the potential metabolites in FAP based on metabolomic strategy. Serum metabolites from FAP patients (n = 30) and healthy individuals (n = 34) were detected and qualified using Ultra Performance Liquid Chromatography and Tandem Mass Spectrometry (UPLC- MS/MS). 118 metabolites were identified with statistical tests of orthogonal partial least-squares-discriminant analysis (OPLS-DA), with the conditions of variable importance in projection (VIP) >1, p < 0.05 using the Mann-Whitney U test, and fold change (FC) ≥2 or ≤0.5. OPLS-DA model was useful for distinguishing FAP patients from healthy controls. Unique metabolic signatures were pooled in FAP patients covering tricarboxylic acid (TCA) cycle, amino acids metabolism, vitamin D, fatty acids metabolism, and bile acids (BAs) metabolism. Our results demonstrated that metabolites alterations in FAP can be helpful for further analysis of metabonomics induced by APC mutation, and these alterations might be involved in the progress of intestinal carcinogenesis.


Subject(s)
Adenomatous Polyposis Coli/blood , Biomarkers/blood , Metabolome , Metabolomics , Adolescent , Adult , Case-Control Studies , Chromatography, High Pressure Liquid , Computational Biology/methods , Female , Humans , Male , Metabolomics/methods , Middle Aged , Reproducibility of Results , Tandem Mass Spectrometry , Young Adult
17.
Pathol Res Pract ; 215(6): 152409, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31000383

ABSTRACT

Pyruvate kinase M2 (PKM2) serves as a key enzyme that promotes aerobic glycolysis. This study investigated the function of PKM2 in tumor growth and maintenance in gastric cancer (GC). Histological staining was applied to detect PKM2 expression in GC tissues. PCR and western blotting were used to measure PKM2 expression in GC cells. PKM2 was knocked down to examine the biological behavior of tumors, glycometabolism, and apoptosis. PKM2 was upregulated in GC tissues (65%, 34/52) compared with that in adjacent normal tissues (27%, 10/37). Moreover, PKM2 knockdown inhibited proliferation of BGC823 GC cells, and elevated PKM2 levels were associated with poor survival of GC patients. Furthermore, knockdown of PKM2 altered the biological behavior of BGC823 cells through induction of apoptosis. In conclusion, the results of this study indicated that inhibition of PKM2 could represent a novel strategy for gastric cancer treatment.


Subject(s)
Glycolysis/physiology , Pyruvate Kinase/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Heterografts , Humans , Kaplan-Meier Estimate , Mice , Prognosis , Stomach Neoplasms/mortality
18.
J Pathol ; 248(3): 304-315, 2019 07.
Article in English | MEDLINE | ID: mdl-30737779

ABSTRACT

Androgen receptor (AR) and its variants (AR-Vs) promote tumorigenesis and metastasis in many hormone-related cancers, such as breast, prostate and hepatocellular cancers. However, the expression patterns and underlying molecular mechanisms of AR in gastric cancer (GC) are not fully understood. This study aimed to detect the expression of AR-Vs in GC and explored their role in metastasis of GC. Here, the AR expression form was identified in GC cell lines and tissues by RT-PCR and qPCR. Transwell assays and experimental lung metastasis animal models were used to assess the function of AR in cell migration and invasion. Downstream targets of AR were screened by bioinformatics, and identified by luciferase reporter assays and electrophoretic mobility shift assays. AR-v12 was identified as the main expression form in GC cell lines and tissues. Different from full length of AR, AR-v12 was localized to the nucleus independent of androgen. Upregulation of AR-v12 in primary GC tissues was significantly associated with metastasis. Overexpression of AR-v12 promoted migration and invasion independent of androgen. Knockdown of AR-v12 inhibited migration and invasion in vitro, as well as metastasis in vivo. Furthermore, AR-v12, serving as a transcription factor, promoted metastasis through regulating the promoter activity of MYLK. In AR-v12 overexpressing cells, knockdown of MYLK inhibited cell migration and invasion, while in AR-v12 knocked-down cells, overexpression of MYLK promoted cell migration and invasion. Collectively, our study demonstrates that AR-v12 is highly expressed in GC tissues and promotes migration and invasion through directly regulating MYLK. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Calcium-Binding Proteins/metabolism , Myosin-Light-Chain Kinase/metabolism , Receptors, Androgen/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Neoplasm Invasiveness/pathology
19.
Gastric Cancer ; 22(5): 941-954, 2019 09.
Article in English | MEDLINE | ID: mdl-30778796

ABSTRACT

BACKGROUND AND AIMS: Helicobacter pylori invades the mucosal barrier and infects the mucins of gastric epithelial cells. However, whether gastric carcinogenesis caused by H. pylori infection involves the membrane-bound mucins is unclear. This study explored the role of mucin 17 (MUC17) in gastric cancer (GC) associated with H. pylori infection. METHODS: The expression of MUC17 and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was examined in human GC cells and tissues with H. pylori infection. Gain- and loss-of-function assays were performed to assess the role of MUC17 in regulating CEACAM1 in H. pylori-infected GC cells. RESULTS: MUC17 was downregulated in H. pylori-infected GC cells and tissues in association with poor survival of GC patients. Downregulation of MUC17 was attributable to MUC17 promoter methylation mediated by DNA methyltransferase 1 (DNMT1) H. pylori-enhanced GC cell proliferation and colony formation associated with MUC17 downregulation. Gain- and loss-of-function assays showed that MUC17 inhibited the H. pylori-enhanced GC cell growth by preventing the translocation of H. pylori CagA into GC cells. Moreover, MUC17 downregulated the expression of CEACAM1 variant 3S (CEACAM1-3S) in GC cells and tissues with H. pylori infection. Additionally, MUC17 downregulated CEACAM1 promoter activity via attenuation of NF-κB activation in GC cells. CONCLUSIONS: MUC17 was epigenetically downregulated in GC with H. pylori infection. MUC17 inhibited H. pylori CagA translocation via attenuation of NF-κB-mediated expression of CEACAM1-3S in GC cells. Thus, MUC17 may serve as a valuable prognostic biomarker for H. pylori-associated GC.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Helicobacter Infections/complications , Mucins/metabolism , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Antigens, CD/genetics , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/genetics , Cell Proliferation , Female , Follow-Up Studies , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Humans , Male , Middle Aged , Mucins/genetics , NF-kappa B/genetics , Prognosis , Promoter Regions, Genetic , Stomach Neoplasms/epidemiology , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , Survival Rate , Tumor Cells, Cultured
20.
Sci Bull (Beijing) ; 64(4): 236-244, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-36659713

ABSTRACT

Gastric cancer (GC) is a highly heterogeneous disease with multiple cellular types and poor prognosis. However, the cellular evolution and molecular basis of GC at the individual intra-tumor level has not been well demonstrated. We performed single-cell whole exome sequencing to detect somatic single-nucleotide variants (SNVs) and significantly mutated genes (SMGs) among 34 tumor cells and 9 normal cells from a patient with GC. The Complete Prediction for Protein Conformation (CPPC) approach directly predicting the folding conformation of the protein 3D structure with Protein Folding Shape Code, combined with functional experiments were used to confirm the characterization of mutated SMGs in GC cells. We identified 201 somatic SNVs, including 117 non-synonymous mutations in GC cells. Further analysis identified 24 significant mutated genes (SMGs) in single cells, for which a single amino acid change might affect protein conformation. Among them, two genes (CDC27 and FLG) that were mutated only in single cells but not in the corresponding tumor tissue, were recurrently present in another GC tissue cohort, and may play a potential role to promote carcinogenesis, as confirmed by functional characterization. Our findings showed a mutational landscape of GC at intra-tumor level for the first time and provided opportunities for understanding the heterogeneity and individualized target therapy for this disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...