Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Curr Microbiol ; 80(5): 171, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024713

ABSTRACT

Dengue remains a public health issue worldwide. Similar to chronic infectious diseases, stimulation of cytokine production is not enough to drive immune effector cells for effective virus clearance. One possible mechanism is the virus induces a large number of negative stimulatory cytokines inhibiting immune response. Interleukin 37 (IL-37) plays a crucial regulatory role in infection and immunity, inhibits innate and adaptive immunity as an anti-inflammatory cytokine by inhibiting proinflammatory mediators and pathways. To date, there are few studies reporting correlations between dengue fever (DF) and IL-37. In this study we found that the serum IL-37b and IL-37b-producing monocytes in patients were significantly increased in DF patients. A majority of the IL-37b produced by DF patients was produced by monocytes, not lymphocytes. Increased levels of IL-6, IL-10, and IFN-α were also found in DF patients. However, we failed to detect IL-1ß, IL-17A and TNF-α in plasma, because of off-target. In our study, there was no relation between IL-6, IL-10, and IFN-α expressions and IL-37b in serum (P > 0.05). The IL-37b-producing monocytes were negatively correlated with the level of IFN-α in serum and platelet count, and positively correlated with lymphocytes percentage (P < 0.05, respectively). Additionally, serum DENV nonstructural protein 1 levels were positively correlated with monocytes percentages (P < 0.05). Our data represents findings for IL-37b expression and its potential mechanisms in DF patients' immune response.


Subject(s)
Dengue Virus , Dengue , Humans , Interleukin-10 , Dengue Virus/physiology , Interleukin-6 , Viral Load , Cytokines
2.
Biochem Biophys Res Commun ; 533(4): 1204-1211, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33059922

ABSTRACT

Atherosclerosis is a chronic vascular inflammatory disease that initially starts from an arterial intima lesion and endothelial barrier dysfunction. The purpose of this study was to investigate the role of TM4SF19, a recently identified member of the transmembrane 4L six superfamily, in vascular endothelial cell adherens junctions. We found TM4SF19 expression was significantly increased in atherosclerotic plaques and sera of patients with coronary heart disease (CHD) compared with healthy people by immunohistochemistry and ELISA. In vitro, human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharides (LPS). TM4SF19 and VE-cadherin expression as well as cell adherens junctions were assessed. Additionally, LPS could upregulate TM4SF19 expression and downregulate VE-cadherin expression in HUVECs in a concentration dependent manner. Overexpression of TM4SF19 substantially aggravated LPS-induced reduction of VE-cadherin expression and attenuation of vascular endothelial cell adherens junctions. However, both the decreased VE-cadherin expression and weakened cell adherens junctions induced by LPS could be dramatically reversed when the expression of TM4SF19 was depressed. This study is the first to reveal the effect of TM4SF19 on endothelial cell adherens junctions. Meanwhile, our results also provide novel therapeutic strategies for atherosclerotic diseases.


Subject(s)
Adherens Junctions/metabolism , Antigens, CD/metabolism , Atherosclerosis/metabolism , Cadherins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Adherens Junctions/drug effects , Antigens, CD/genetics , Atherosclerosis/blood , Cadherins/genetics , Cells, Cultured , Coronary Disease/blood , Coronary Disease/metabolism , Gene Expression Regulation , Humans , Lipopolysaccharides/pharmacology , Plaque, Atherosclerotic/metabolism , RNA, Messenger/metabolism
3.
Atherosclerosis ; 312: 43-53, 2020 11.
Article in English | MEDLINE | ID: mdl-32971395

ABSTRACT

BACKGROUND AND AIMS: Long noncoding RNAs (lncRNAs) have recently been implicated in many biological and disease processes, but the exact mechanism of their involvement in atherosclerosis is unclear. The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic lesions. This study aimed to investigate the potential effects of lncRNA ZNF800, a previously uncharacterized lncRNA, on VSMC proliferation and migration. METHODS: The expression of lncRNA ZNF800 in atherosclerotic plaque tissues was detected using reverse transcription-quantitative PCR (RT-qPCR), while the role and mechanism of lncRNA ZNF800 in proliferation and migration of VSMCs were investigated by CCK8 assay, transwell assay, scratch wound assay, RT-qPCR and Western blot. RESULTS: We found that lncRNA ZNF800 was significantly more abundant in atherosclerotic plaque tissues, and substantially suppressed the proliferation and migration of VSMCs. LncRNA ZNF800 had no effect on phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mRNA expression but dramatically increased the levels of PTEN protein. Enhanced lncRNA ZNF800 expression inhibited the activity of the AKT/mTOR/HIF-1α signaling pathway, downregulated the expression of vascular endothelial growth factor α (VEGF-α) and matrix metalloproteinase 1 (MMP1), and suppressed VSMC proliferation and migration. These inhibitory effects of lncRNA ZNF800 were abolished by knockdown of PTEN. The inhibitory effects of lncRNA ZNF800 on cell proliferation and migration and the expression of VEGF-α and MMP1 were exacerbated by HIF-1α knockdown in VSMCs. CONCLUSIONS: These findings demonstrated that lncRNA ZNF800 suppressed VSMC proliferation and migration by interacting with PTEN through a mechanism involving AKT/mTOR/HIF-1α signaling. Therefore, it may play a key atheroprotective role and represent a potential therapeutic target for atherosclerosis-related diseases.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Movement , Cell Proliferation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/genetics
4.
Inflammation ; 43(6): 2222-2231, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32621119

ABSTRACT

Atherosclerosis is a progressive chronic inflammation in the arterial walls. It is believed that the deposition of low-density lipoprotein (LDL) and its damage to endothelial cells play a vital role in atherosclerosis. Oxidized LDL (Ox-LDL) was confirmed to induce endothelial cell pyroptosis which plays an important role in intima inflammation and the development of atherosclerosis, but the underlying molecular mechanism needs to be explored. Here, we showed that ox-LDL upregulated the expression of mixed lineage kinase domain-like (MLKL) protein at both the mRNA and protein levels in endothelial cells, associated with the augment of pro-caspase-1 cleavage, interleukin-1ß (IL-1ß) maturation, pro-IL-1ß production, and lactate dehydrogenase (LDH) release. Overexpression of MLKL substantially aggravated ox-LDL-induced increasing levels of caspase-1, IL-1ß, pro-IL-1ß, and LDH. MLKL-induced caspase-1 activation and IL-1ß maturation were abolished by NLR family, pyrin domain-containing 3 (NLRP3) specific inhibitor MCC950, or extracellular high potassium concentration. Our findings indicated that MLKL is essential for regulation of ox-LDL-induced pyroptosis and inflammation through the activation of NLRP3 inflammasome, and suggested that MLKL could act as potential therapeutic targets to ameliorate atherosclerosis-related diseases.


Subject(s)
Gene Expression Regulation , Inflammasomes/metabolism , Lipoproteins, LDL/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Kinases/metabolism , Pyroptosis , Atherosclerosis , Furans/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Indenes/pharmacology , Inflammation , Plasmids/metabolism , RNA, Small Interfering/metabolism , Sulfonamides/pharmacology
5.
Front Immunol ; 11: 518, 2020.
Article in English | MEDLINE | ID: mdl-32296431

ABSTRACT

Little is known about how tuberculosis (TB) impairs dendritic cell (DC) function and anti-TB immune responses. We previously showed that the B and T lymphocyte attenuator (BTLA), an immune inhibitory receptor, is involved in TB pathogenesis. Here, we examined whether BTLA expression in TB affects phenotypic and functional aspects of DCs. Active TB patients exhibited higher expression of BTLA in myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) subsets compared with healthy controls (HCs). BTLA expression was similarly high in untreated TB, TB relapse, and sputum-bacillus positive TB, but anti-TB therapy reduced TB-driven increases in frequencies of BTLA+ DCs. BTLA+ DCs in active TB showed decreased expression of the DC maturation marker CD83, with an increased expression of CCR7 in mDCs. BTLA+ DCs in active TB displayed a decreased ability to express HLA-DR and to uptake foreign antigen, with a reduced expression of the co-stimulatory molecule CD80, but not CD86. Functionally, BTLA+ DCs in active TB showed a decreased production of IL-12 and IFN-α as well as a reduced ability to stimulate allogeneic T-cell proliferative responses. BTLA+ mDCs produced larger amounts of IL-4 and TGF-ß than BTLA- mDCs in both HCs and APT patients. BTLA+ DCs from active TB patients showed a reduced ability to stimulate Mtb antigen-driven Th17 and Th22 polarizations as compared to those from HCs. Conversely, these BTLA+ DCs more readily promoted the differentiation of T regulatory cells (Treg) and Th2 than those from HCs. These findings suggest that TB-driven BTLA expression in DCs impairs the expression of functional DC surrogate markers and suppress the ability of DCs to induce anti-TB Th17 and Th22 response while promoting Th2 and Foxp3+ Tregs.


Subject(s)
Dendritic Cells/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Tuberculosis, Pulmonary/immunology , Adolescent , Adult , Aged , Cell Differentiation/immunology , Female , Humans , Interferon-alpha/biosynthesis , Interleukin-12/biosynthesis , Interleukin-4/biosynthesis , Lymphocyte Activation/immunology , Male , Middle Aged , Transforming Growth Factor beta/biosynthesis , Young Adult
6.
Mol Immunol ; 91: 86-96, 2017 11.
Article in English | MEDLINE | ID: mdl-28889065

ABSTRACT

Dendritic cell (DC) plays an important role in the immune response against pulmonary tuberculosis. However, the phenotypic profile of DC subsets in peripheral blood in individuals with active pulmonary tuberculosis (APT) is still inconclusive. Here, we demonstrated that the absolute numbers of total DC (tDC), myeloid DC (mDC) and plasmacytoid DC (pDC) in individuals with APT were decreased compared to healthy controls (HCs). The decreased number of DCs, especially of pDC, seems to be a useful diagnostic marker of APT. Meanwhile, the number of DCs was associated with the prolonged/complicated TB, ATD treatment effect and lymphocyte immune reactions, as manifested that relapsed APT patients with a higher number of tDC and lower number of pDC compared to newly diagnosed patients. Interestingly, mDC from APT patients displayed high expressions of CD83 and CCR7, but pDC displayed low expressions of CD83 and CCR7. Moreover, DCs from APT patients expressed lower levels of HLA-DR and CD80, but expressed a higher level of CD86 than those from HCs. However, the antigen uptake capacity of DC subsets was not different between APT and HCs, despite the antigen uptake capacity of pDC was much lower than that of mDC in both APT patients and HCs. Our data represent a systematic profile of DC subsets in the blood of APT patients, and would represent a useful biomarker for APT.


Subject(s)
Dendritic Cells/immunology , Gene Expression Regulation/immunology , Tuberculosis, Pulmonary/immunology , Acute Disease , Adolescent , Adult , Aged , Antigens, CD/immunology , B7-1 Antigen/immunology , Dendritic Cells/pathology , Female , HLA-DR Antigens/immunology , Humans , Immunoglobulins/immunology , Male , Membrane Glycoproteins/immunology , Middle Aged , Receptors, CCR7/immunology , Tuberculosis, Pulmonary/pathology , CD83 Antigen
7.
Mol Immunol ; 90: 264-272, 2017 10.
Article in English | MEDLINE | ID: mdl-28846924

ABSTRACT

It has been reported that circular RNA (circRNA) is associated with human cancer. However, few studies have been reported in active pulmonary tuberculosis (APTB). The global circRNA expression was detected in the peripheral blood mononuclear cells (PBMCs) of APTB patients (n=5) and health controls (HC) (n=5) by using high-throughput sequencing. According to the systematical bioinformatics analysis, the basic content of circRNAs and their fold changes in the two groups were calculated. We selected 6 significant differentially expressed circRNAs, hsa_circ_0005836, hsa_circ_0009128, hsa_circ_0003519, hsa_circ_0023956, hsa_circ_0078768, and hsa_circ_0088452 and validated the expression in PBMCs from APTB (n=10) and HC (n=10) by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Further, the verification of these specific circRNAs (hsa_circ_0005836 and hsa_circ_0009128) between APTB (n=34) and HC (n=30) in PBMCs was also conducted by qRT-PCRs. The RNA-seq data showed the significant differential expression of the 523 circRNAs between the APTB and HC groups (199 circRNAs were significantly up-regulated and 324 circRNAs were down-regulated). Hsa_circ_0005836 and hsa_circ_0009128 expression was significantly down-regulated in the PBMCs of APTB (P<0.05) in the samples of APTB compared to HC in our study. The gene ontology based enrichment analysis of the circRNA-miRNA-mRNAs network showed that cellular catabolic process (P=7.10E-08), regulation of metabolic process (P=2.10E-06), catalytic activity (P=3.67E-08), protein binding (P=1.71E-07), cell part (P=3.46E-06), intracellular part (P=1.71E-07), and intracellular (P=3.67E-08) were recognized in the comparisons between APTB and HC. Based on KEGG analysis, HTLV-I infection, regulation of actin cytoskeleton, neurotrophin signaling pathway and mTOR signaling pathway were relevant during tuberculosis bacillus infection. We found for the first time that hsa_circ_0005836 and hsa_circ_0009128 were significantly down-regulated in the PBMCs of APTB compared with HC. Our findings indicate hsa_circ_0005836 might serve as a novel potential biomarker for TB infection.


Subject(s)
Leukocytes, Mononuclear/cytology , RNA/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Actin Cytoskeleton/metabolism , Adolescent , Adult , Aged , Base Sequence , Female , Genetic Markers/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Polysaccharides/metabolism , RNA/biosynthesis , RNA, Circular , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Young Adult
8.
Cell Immunol ; 311: 28-35, 2017 01.
Article in English | MEDLINE | ID: mdl-27717503

ABSTRACT

Despite past extensive studies on B and T lymphocyte attenuator (BTLA)-mediated negative regulation of T cell activation, the role of BTLA in antigen presenting cells (APCs) in patients with active pulmonary tuberculosis (ATB) remains poorly understood. Here, we demonstrate that BTLA expression on CD11c APCs increased in patients with ATB. Particularly, BTLA expression in CD11c APCs was likely associated with the attenuated stimulatory capacity on T cells (especially CD8+ T cell) proliferation. BTLA-expressing CD11c APCs showed lower antigen uptake capacity, lower CD86 expression, higher HLA-DR expression, and enhanced IL-6 secretion, compared to counterpart BTLA negative CD11c APCs in healthy controls (HC). Interestingly, BTLA-expressing CD11c APCs from ATB patients displayed lower expression of HLA-DR and less IL-6 secretion, but higher expression of CD86 than those from HC volunteers. Mixed lymphocyte reaction suggests that BTLA expression is likely associated with positive rather than conventional negative regulation of CD11c APCs stimulatory capacity. This role is impaired in ATB patients manifested by low expression of HLA-DR and low production of IL-6. This previous unappreciated role for BTLA may have implications in the prevention and treatment of patients with ATB.


Subject(s)
Antigen-Presenting Cells/immunology , T-Lymphocytes/immunology , Tuberculosis, Pulmonary/immunology , Adolescent , Adult , B7-2 Antigen/metabolism , CD11c Antigen/metabolism , Cell Proliferation , Cells, Cultured , Female , HLA-DR Antigens/metabolism , Humans , Interleukin-6/metabolism , Lymphocyte Activation , Male , Middle Aged , Receptors, Immunologic/metabolism , T-Lymphocytes/microbiology , Young Adult
9.
Mol Immunol ; 79: 14-21, 2016 11.
Article in English | MEDLINE | ID: mdl-27689749

ABSTRACT

Roles of human IL-37 in infections remain poorly characterized. Although plasma IL-37 is elevated in patients with tuberculosis (TB), IL-37 source and immune correlate in TB have not been investigated. It is also unknown whether and how TB can influence the ability of immune cells to mount innate responses of IL-37 and pre-inflammatory cytokines. Here, we demonstrated that IL-37b-producing monocytes coincided with a source of elevated plasma IL-37b in TB patients. While IL-37b production in TB was associated with prolonged/complicated TB, TB burdens and inflammatory reactions, it negatively correlated with immune responses of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α or IL-10. Interestingly, mycobacterial re-infection of monocytes from TB patients, but not healthy BCG-vaccinated controls, enhanced or sustained IL-37b production by cultured monocytes. TB-sensitized monocytes from TB patients mounted more robust immune responses of IL-37b than those of pre-inflammatory cytokines during mycobacterial re-infection in culture. Our data represent new findings in terms of IL-37b responses, immune correlates and potential mechanisms in TB patients.


Subject(s)
Interleukin-1/immunology , Monocytes/immunology , Adult , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Tuberculosis, Pulmonary/immunology
10.
Am J Transl Res ; 8(2): 623-33, 2016.
Article in English | MEDLINE | ID: mdl-27158354

ABSTRACT

Despite the recent appreciation of interleukin 35 (IL-35) function in inflammatory diseases, little is known for IL-35 response in patients with active tuberculosis (ATB). In the current study, we demonstrated that ATB patients exhibited increases in serum IL-35 and in mRNA expression of both subunits of IL-35 (p35 and EBI3) in white blood cells and peripheral blood mononuclear cells. Consistently, anti-TB drug treatment led to reduction in serum IL-35 level and p35 or EBI3 expression. TB infection was associated with expression of p35 or EBI3 protein in CD4(+) but not CD8(+) T cells. Most p35(+)CD4(+) T cells and EBI3(+)CD4(+) T cells expressed Treg-associated marker CD25. Our findings may be important in understanding immune pathogenesis of TB. IL-35 in the blood may potentially serve as a biomarker for immune status and prognosis in TB.

11.
Mediators Inflamm ; 2016: 8026494, 2016.
Article in English | MEDLINE | ID: mdl-27006530

ABSTRACT

Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.


Subject(s)
Carboplatin/pharmacology , Colorectal Neoplasms/metabolism , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cyclin D1/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Signal Transduction/drug effects
12.
Int J Clin Exp Pathol ; 8(2): 1341-53, 2015.
Article in English | MEDLINE | ID: mdl-25973018

ABSTRACT

There were limited studies assessing the role of HMGB1 in TB infection. In this prospective study, we aimed to assess the levels of HMGB1 in plasma or sputum from active pulmonary tuberculosis (APTB) patients positive for Mtb culture test, and to evaluate its relationship with inflammatory cytokines and innate immune cells. A total of 36 sputum Mtb culture positive APTB patients and 32 healthy volunteers (HV) were included. Differentiated THP-1 cells were treated for 6, 12 and 24 hrs with BCG at a multiplicity of infection of 10. The absolute values and percentages of white blood cells (WBC), neutrophils, lymphocytes, and monocytes were detected by an automatic blood analyzer. Levels of HMGB1, IL-6, IL-10 and TNF-α in plasma, sputum, or cell culture supernatant were measured by ELISA. The blood levels of HMGB1, IL-6, IL-10 and TNF-α, the absolute values of WBC, monocytes and neutrophils, and the percentage of monocytes were significant higher in APTB patients than those in HV groups (P < 0.05). The sputum levels of HMGB1, IL-10, and TNF-α were also significantly higher in APTB patients than those in HV groups (P < 0.05). Meanwhile, plasma level of HMGB1, IL-6, and IL-10 in APTB patients were positively correlated with those in sputum (P < 0.05), respectively. IL-6 was positively correlated with HMGB1 both in plasma and sputum of APTB patients (P < 0.05). HMGB1 and IL-6 is positively correlated with the absolute number of monocytes in APTB patients (P < 0.05). BCG induced HMGB1, IL-6, IL-10 and TNF-α production effectively in PMA-treated THP-1 cells. HMGB1 may be used as an attractive biomarker for APTB diagnosis and prognosis and may reflect the inflammatory status of monocytes in patients with APTB.


Subject(s)
HMGB1 Protein/analysis , Interleukin-6/analysis , Monocytes/metabolism , Sputum/chemistry , Tuberculosis, Pulmonary/diagnosis , Adult , Biomarkers/blood , Female , HMGB1 Protein/blood , Humans , Interleukin-10/analysis , Interleukin-10/blood , Interleukin-6/blood , Male , Prognosis , Tuberculosis, Pulmonary/blood , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL