Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Commun Biol ; 7(1): 690, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839937

ABSTRACT

Evolutionary biology faces the important challenge of determining how to interpret the relationship between selection pressures and evolutionary radiation. The lack of morphological evidence on cross-species research adds to difficulty of this challenge. We proposed a new paradigm for evaluating the evolution of branches through changes in characters on continuous spatiotemporal scales, for better interpreting the impact of biotic/abiotic drivers on the evolutionary radiation. It reveals a causal link between morphological changes and selective pressures: consistent deformation signals for all tested characters on timeline, which provided strong support for the evolutionary hypothesis of relationship between scarabs and biotic/abiotic drivers; the evolutionary strategies under niche differentiation, which were manifested in the responsiveness degree of functional morphological characters with different selection pressure. This morphological information-driven integrative approach sheds light on the mechanism of macroevolution under different selection pressures and is applicable to more biodiversity research.


Subject(s)
Biological Evolution , Phylogeny , Animals , Coleoptera/anatomy & histology , Coleoptera/genetics , Selection, Genetic
2.
Nutrients ; 16(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794729

ABSTRACT

Polymethoxyflavonoids, such as nobiletin (abundant in Citrus depressa), have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-dementia effects, and are also a circadian clock modulator through retinoic acid receptor-related orphan receptor (ROR) α/γ. However, the optimal timing of nobiletin intake has not yet been determined. Here, we explored the time-dependent treatment effects of nobiletin and a possible novel mechanistic idea for nobiletin-induced circadian clock regulation in mice. In vivo imaging showed that the PER2::LUC rhythm in the peripheral organs was altered in accordance with the timing of nobiletin administration (100 mg/kg). Administration at ZT4 (middle of the light period) caused an advance in the peripheral clock, whereas administration at ZT16 (middle of the dark period) caused an increase in amplitude. In addition, the intraperitoneal injection of nobiletin significantly and potently stimulated corticosterone and adrenaline secretion and caused an increase in Per1 expression in the peripheral tissues. Nobiletin inhibited phosphodiesterase (PDE) 4A1A, 4B1, and 10A2. Nobiletin or rolipram (PDE4 inhibitor) injection, but not SR1078 (RORα/γ agonist), caused acute Per1 expression in the peripheral tissues. Thus, the present study demonstrated a novel function of nobiletin and the regulation of the peripheral circadian clock.


Subject(s)
Circadian Clocks , Corticosterone , Flavones , Animals , Flavones/pharmacology , Circadian Clocks/drug effects , Mice , Male , Corticosterone/blood , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Epinephrine , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/physiology
3.
Biochem Biophys Res Commun ; 723: 150177, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38810320

ABSTRACT

PURPOSE: We found a novel lncRNA named lncAC138150.2 related to the overall survival and staging of patients with colorectal cancer (CRC) by bioinformatic analysis using data from the Cancer Genome Atlas (TCGA), and the study aimed to elucidate the function of lncAC138150.2 and underlying mechanisms. METHODS: Target molecules were knocked down by transfection with antisense oligonucleotides (ASOs), siRNAs, or lentiviruses and overexpressed by transfection with plasmids. The function of lncAC138150.2 was determined using histological, cytological, and molecular biology methods. The underlying mechanism of lncAC138150.2 function was investigated using RNA-seq, bioinformatics analysis, and molecular biology methods. RESULTS: The expression of lncAC138150.2 was increased in colorectal tissues compared with paired normal tissues. The lncAC138150.2 knockdown increased apoptosis but did not change the cell proliferation, cell cycle distribution, or cell migration ability of CRC cells, while lncAC138150.2 overexpression decreased CRC apoptosis. lncAC138150.2 was mainly located in the cell nucleus, and each lncAC138150.2 transcript knockdown increased CRC apoptosis. BCL-2 pathway was significantly altered in apoptosis induced by lncAC138150.2 knockdown, which was alleviated by BAX knockdown. The expression of LYN was significantly decreased with lncAC138150.2 knockdown, LYN knockdown increased CRC apoptosis, and its overexpression completely alleviated CRC apoptosis induced by lncAC138150.2 knockdown. CONCLUSION: lncAC138150.2 significantly inhibited CRC apoptosis and affected the prognosis of patients with CRC, through the LYN/BCL-2 pathway.

4.
Front Pediatr ; 12: 1377333, 2024.
Article in English | MEDLINE | ID: mdl-38818349

ABSTRACT

Background: Children with autoimmune hepatitis (AIH) often present with symptoms similar to those of other liver diseases. This study consists of a comparison between the clinical and histological characteristics of AIH and those of other four AIH-like liver diseases [i.e., drug-induced liver injury (DILI), gene deficiency, infectious liver disease and other etiology of liver disease], as well as an evaluation of the AIH scoring system's diagnostic performance. Methods: All children with AIH-like liver disease at our center from January 2013 to December 2022 were included. The clinical and histological characteristics of the AIH group were retrospectively analyzed and compared with those of the other four groups. Results: A total of 208 children were included and divided into AIH group (18 patients), DILI group (38 patients), gene deficiency group (44 patients), infectious liver disease group (74 patients), and other etiology group (34 patients). The antinuclear antibodies (ANA) ≥ 1:320 rate was significantly higher in the AIH compared to the other four groups after multiple testing correction (p < 0.0125), while patients with positive antibodies to liver-kidney microsomal-1 (anti-LKM1, n = 3) and smooth muscle antibodies (SMA, n = 2) were only observed in the AIH group. The positive rates of antibodies to liver cytosol type1 (anti-LC1) and Ro52 were higher than those in the other four groups. The serum immunoglobulin G (IgG) and globulin levels, as well as the proportions of portal lymphoplasmacytic infiltration, lobular hepatitis with more than moderate interface hepatitis, and lobular hepatitis with lymphoplasmacytic infiltration, were significantly higher in the AIH group than in the other four groups after multiple testing correction (p < 0.0125). The cirrhosis rate in the AIH group was higher than that in the DILI and infectious liver disease groups (p < 0.0125). Both the simplified (AUC > 0.73) and the revised systems (AUC > 0.93) for AIH have good diagnostic performance, with the latter being superior (p < 0.05). Conclusion: Positive autoantibodies (ANA ≥ 1:320 or anti-LKM1 positive, or accompanied by SMA, anti-LC1 or Ro-52 positive) and elevated serum IgG or globulin levels contribute to early recognition of AIH. The presence of lobular hepatitis with more than moderate interface hepatitis and lymphoplasmacytic infiltration contribute to the diagnosis of AIH.

5.
Ren Fail ; 46(1): 2355354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785302

ABSTRACT

Serum magnesium levels exceeding 0.9 mmol/L are associated with increased survival rates in patients with CKD. This retrospective study aimed to identify risk factors for cardio-cerebrovascular events among patients receiving continuous ambulatory peritoneal dialysis (CAPD) and to examine their correlations with serum magnesium levels. Sociodemographic data, clinical physiological and biochemical indexes, and cardio-cerebrovascular event data were collected from 189 patients undergoing CAPD. Risk factors associated with cardio-cerebrovascular events were identified by univariate binary logistic regression analysis. Correlations between the risk factors and serum magnesium levels were determined by correlation analysis. Univariate regression analysis identified age, C-reactive protein (CRP), red cell volume distribution width standard deviation, red cell volume distribution width corpuscular volume, serum albumin, serum potassium, serum sodium, serum chlorine, serum magnesium, and serum uric acid as risk factors for cardio-cerebrovascular events. Among them, serum magnesium ≤0.8 mmol/L had the highest odds ratio (3.996). Multivariate regression analysis revealed that serum magnesium was an independent risk factor, while serum UA (<440 µmol/L) was an independent protective factor for cardio-cerebrovascular events. The incidence of cardio-cerebrovascular events differed significantly among patients with different grades of serum magnesium (χ2 = 12.023, p = 0.002), with the highest incidence observed in patients with a serum magnesium concentration <0.8 mmol/L. High serum magnesium levels were correlated with high levels of serum albumin (r = 0.399, p < 0.001), serum potassium (r = 0.423, p < 0.001), and serum uric acid (r = 0.411, p < 0.001), and low levels of CRP (r = -0.279, p < 0.001). In conclusion, low serum magnesium may predict cardio-cerebrovascular events in patients receiving CAPD.


Subject(s)
Magnesium , Peritoneal Dialysis, Continuous Ambulatory , Humans , Male , Female , Peritoneal Dialysis, Continuous Ambulatory/adverse effects , Middle Aged , Magnesium/blood , Retrospective Studies , Risk Factors , Adult , Aged , Cardiovascular Diseases/etiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Incidence , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/blood , Cerebrovascular Disorders/epidemiology , Logistic Models , C-Reactive Protein/analysis , Uric Acid/blood , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood
6.
J Asian Nat Prod Res ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794953

ABSTRACT

Propolis is a natural resinous compound produced by bees, mixed with their saliva and wax, and has a range of biological benefits, including antioxidant and anti-inflammatory effects. This article reviews the in vivo transformation of propolis flavonoids and their potential influence on drug efficacy. Despite propolis is widely used, there is little research on how the active ingredients of propolis change in the body and how they interact with drugs. Future research will focus on these interactions and the metabolic fate of propolis in vivo.

7.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
8.
J Virol ; 98(5): e0192523, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624230

ABSTRACT

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Subject(s)
Human papillomavirus 11 , Papillomavirus E7 Proteins , Papillomavirus Infections , Respiratory Tract Infections , Adult , Female , Humans , Male , Epithelial Cells/virology , Epithelial Cells/immunology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Immune Evasion , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/immunology , Interferon-beta/genetics , Macrophages/immunology , Macrophages/virology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology
9.
Clin Otolaryngol ; 49(4): 404-416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558499

ABSTRACT

BACKGROUND: Laryngeal leukoplakia (LL) is a white lesion with high potential of recurrence and malignant transformation. Currently, CO2 laser has become the primary surgical treatment for LL, and the recurrence and malignant transformation rates after treatment vary widely. OBJECTIVE: We performed a systematic review and meta-analysis dedicated to evaluating the rates of recurrence and malignant transformation of LL lesions treated with CO2 laser and exploring relevant risk factors for recurrence or malignant transformation. METHODS: Literature searches were conducted on ProQuest, PubMed, Web of Science, Ovid Medline, Embase, and Cochrane databases. Some articles identified through hand searching were included. RESULTS: A total of 14 articles and 1462 patients were included in this review. Pooled results showed that the overall recurrence rate was 15%, and the malignant transformation rate was 3%. Subgroup analysis showed that the dysplasia grade was not a significant risk factor for the recurrence and malignant transformation of LL (P > .05). CONCLUSIONS: The results of this systematic review and meta-analysis suggest that the CO2 laser is a safe and effective surgical instrument for the excision of LL, which yields low rates of recurrence and malignant transformation. The risk factors relevant to recurrence or malignant transformation remain unclear and require further investigation.


Subject(s)
Cell Transformation, Neoplastic , Laryngeal Neoplasms , Lasers, Gas , Neoplasm Recurrence, Local , Humans , Lasers, Gas/therapeutic use , Cell Transformation, Neoplastic/pathology , Neoplasm Recurrence, Local/pathology , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/surgery , Leukoplakia/surgery , Leukoplakia/pathology , Laser Therapy/methods , Risk Factors
10.
Sci Total Environ ; 928: 172458, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38641117

ABSTRACT

Reducing phosphorus (P) loss from agricultural drainage water is challenging. In this study, we aimed to remove P from agricultural drainage water by developing an integrated sediment interceptor with adsorbent modules filled with Zr/Zn nanocomposite-modified ceramsite (ZMC-interceptor). The results of sequential chemical extraction and 31P NMR showed that the contents of H2O-P (1.15 % of total P), NaHCO3-Pi (10.48 % of total P), and ortho-P (orthophosphate, 90.6 % of total P) in the sediments of the ZMC-interceptors were higher than those in nearby field soils. The average enrichment ratios of particulate P (PP, >450 nm), medium-colloidal P (MCP, 220-450 nm), fine-colloidal P (FCP, 1-220 nm), and truly dissolved P (Truly DP, <1 nm) in the sediment over the field soil were 1.37, 1.21, 1.70, and 3.01, respectively. No significant differences were found in the sediment P-trapping function with and without ZMC integrated sediment interceptors. However, the ZMC-interceptors remarkably reduced total P (39.7 % for influent concentrations of 0.19-0.68 mg L-1) from agricultural drainage water compared to those unmodified ceramsite-interceptors (21.7 % for influent concentrations of 0.17-0.66 mg L-1) during the drainage 'window period' (June-August 2022). This was mainly due to the higher removal efficacies of MCP (19.7 %), FCP (23.3 %), and Truly DP (34.8 %) of the ZMC-interceptors. This study highlighted that the ZMC-interceptor not only trapped P in the sediment but also facilitated the removal of different-sized P fractionated from agricultural drainage water.

11.
Environ Sci Technol ; 58(17): 7554-7566, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38647007

ABSTRACT

Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.


Subject(s)
Colloids , Phosphorus , Soil , Soil/chemistry , Colloids/chemistry , Soil Microbiology , RNA, Ribosomal, 16S , Bacteria/metabolism
12.
J Immunother Cancer ; 12(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429070

ABSTRACT

BACKGROUND: The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS: The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS: Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION: Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.


Subject(s)
Colorectal Neoplasms , Photochemotherapy , Animals , Mice , Cell Line, Tumor , Colorectal Neoplasms/therapy , Immunotherapy , Mitochondria/metabolism , Programmed Cell Death 1 Receptor/metabolism , Pyroptosis , Gasdermins/drug effects , Gasdermins/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
13.
J Magn Reson Imaging ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38471960

ABSTRACT

BACKGROUND: Early and accurate identification of lymphatic node metastasis (LNM) and lymphatic vascular space invasion (LVSI) for endometrial cancer (EC) patients is important for treatment design, but difficult on multi-parametric MRI (mpMRI) images. PURPOSE: To develop a deep learning (DL) model to simultaneously identify of LNM and LVSI of EC from mpMRI images. STUDY TYPE: Retrospective. POPULATION: Six hundred twenty-one patients with histologically proven EC from two institutions, including 111 LNM-positive and 168 LVSI-positive, divided into training, internal, and external test cohorts of 398, 169, and 54 patients, respectively. FIELD STRENGTH/SEQUENCE: T2-weighted imaging (T2WI), contrast-enhanced T1WI (CE-T1WI), and diffusion-weighted imaging (DWI) were scanned with turbo spin-echo, gradient-echo, and two-dimensional echo-planar sequences, using either a 1.5 T or 3 T system. ASSESSMENT: EC lesions were manually delineated on T2WI by two radiologists and used to train an nnU-Net model for automatic segmentation. A multi-task DL model was developed to simultaneously identify LNM and LVSI positive status using the segmented EC lesion regions and T2WI, CE-T1WI, and DWI images as inputs. The performance of the model for LNM-positive diagnosis was compared with those of three radiologists in the external test cohort. STATISTICAL TESTS: Dice similarity coefficient (DSC) was used to evaluate segmentation results. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of LNM and LVSI status identification. P value <0.05 was considered significant. RESULTS: EC lesion segmentation model achieved mean DSC values of 0.700 ± 0.25 and 0.693 ± 0.21 in the internal and external test cohorts, respectively. For LNM positive/LVSI positive identification, the proposed model achieved AUC values of 0.895/0.848, 0.806/0.795, and 0.804/0.728 in the training, internal, and external test cohorts, respectively, and better than those of three radiologists (AUC = 0.770/0.648/0.674). DATA CONCLUSION: The proposed model has potential to help clinicians to identify LNM and LVSI status of EC patients and improve treatment planning. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

14.
Cancer Commun (Lond) ; 44(4): 469-490, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512764

ABSTRACT

BACKGROUND: Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS: The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS: Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/ß-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION: Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/ß-catenin pathway and exacerbate chemoresistance in GC.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Heterogeneous-Nuclear Ribonucleoproteins , RNA, Long Noncoding , Stomach Neoplasms , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
15.
Int Immunopharmacol ; 129: 111578, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330795

ABSTRACT

BACKGROUND: Maintenance therapy (MT) for recurrent or metastatic cervical cancer remains non-standardized. This study assessed MT effectiveness using a comprehensive approach and identifies prognosis factors inpatients with recurrent or metastatic cervical cancer. METHODS: From January 2019 and December 2021, over 6000 patients from six Chinese institutions were retrospectively examined. Patients had recurrent/metastatic cervical cancer and underwent first-line chemotherapy with or without MT. We calculated overall and progression-free survival using Kaplan-Meier analysis, comparing via log-rank test, and conducted Cox regression for prognostic factors. RESULTS: Overall, 274 patients were stratified into an MT group (n = 77) and a non-MT group (n = 197). The 3-year OS rates were 52.5 % and 28.0 % for the MT and non-MT groups, respectively. The MT group had significantly enhanced median OS (37 vs. 21 months; HR, 0.43; 95 % CI, 0.30-0.61; P < 0.001) and PFS (21 vs. 14 months; HR, 0.65; 95 % CI, 0.47-0.90; P = 0.014) compared with the non-MT group. No significant differences in efficacy were observed among the various MT regimens, whether PD-1 monoclonal antibody, targeted therapeutic agents, or a combination of both. Extended PFS and OS were observed in patients receiving > 8 MT cycles. Multivariate analyses revealed that oligometastasis, MT, exclusive prior surgery (as opposed to combined surgery and radiotherapy), and extended interval before recurrence were independent OS predictors (P = 0.045, P < 0.001, P = 0.010, and P = 0.005, respectively); oligometastasis, concurrent radiotherapy, MT, and extended interval before recurrence were independent PFS predictors (P = 0.004, P = 0.007, P = 0.009, and P = 0.003). CONCLUSIONS: The MT integration markedly extended PFS and OS in patients diagnosed with recurrent or metastatic cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Prognosis , Retrospective Studies , Uterine Cervical Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Progression-Free Survival
16.
Mol Biotechnol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332433

ABSTRACT

The role of the integrin family in malignancy has received increasing attention. Many studies have confirmed that ITGB4 could activate multiple signal pathways and promote cell migration in various cancers. However, the regulatory role of integrin ß4 (ITGB4) in lung adenocarcinoma (LUAD) is still unclear. Examination of the expression or survival analysis of ITGB4 in cells, pathological samples, and bioinformatics lung adenocarcinoma databases showed ITGB4 was highly expressed in LUAD and significantly associated with poor prognosis. Small interfering RNA and plasmids were performed to investigate the effect of changes in ITGB4 expression on lung adenocarcinoma. Focal adhesion kinase (FAK) inhibitor defactinib was used to further explore the molecular mechanism of ITGB4. The results showed depletion of ITGB4 inhibited migration and activation of FAK signaling pathways in lung adenocarcinoma cells. Moreover, increased ITGB4 expression activated FAK signaling and promoted cell migration, which can be reversed by defactinib. In addition, ITGB4 could interact with FAK in lung adenocarcinoma cells. ITGB4 may promote cell migration of lung adenocarcinoma through FAK signaling pathway and has the potential to be a biomarker for lung adenocarcinoma.

17.
Eur J Med Chem ; 267: 116205, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38350361

ABSTRACT

In this study, a series of novel 4-Aryl-4H-chromene derivatives (D1-D31) were designed and synthesized by integrating quinoline heterocycle to crolibulin template molecule based on the strategy of molecular hybridization. One of these compounds D19 displayed positive antiproliferative activity against U87 cancer cell line (IC50 = 0.90 ± 0.03 µM). Compound D19 was verified as the microtubule-targeting agent through downregulating tubulin related genes of U87 cells, destroying the cytoskeleton of tubulins and interacting with the colchicine-binding site to inhibit the polymerization of tubulins by transcriptome analysis, immune-fluorescence staining, microtubule dynamics and EBI competition assays as well as molecular docking simulations. Moreover, compound D19 induced G2/M phase arrest, resulted in cell apoptosis and inhibited the migration of U87 cells by flow cytometry analysis and wound healing assays. Significantly, compound D19 dose-dependently inhibited the tumor growth of orthotopic glioma xenografts model (GL261-Luc) and effectively prolonged the survival time of mice, which were extremely better than those of positive drug temozolomide (TMZ). Compound D19 exhibited potent in vivo antivascular activity as well as no observable toxicity. Furthermore, the results of in silico simulation studies and P-gp transwell assays verified the positive correlation between compound D19's Blood-Brain Barrier (BBB) permeability and its in vivo anti-GBM activity. Overall, compound D19 can be used as a promising anti-GBM lead compound for the treatment of glioblastoma.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Cell Line, Tumor , Drug Screening Assays, Antitumor , Microtubules/metabolism , Tubulin/metabolism , Tubulin Modulators/pharmacology , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Cell Proliferation
18.
Phys Chem Chem Phys ; 26(11): 8704-8715, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38415756

ABSTRACT

Despite extensive studies on the thermodynamic mechanism governing molecular adsorption at the solid-water interface, a comprehensive understanding of the crucial role of interface properties in mediating the entropy-enthalpy compensation during adsorption is lacking, particularly at a quantitative level. Herein, we employed two types of surface models (hydroxyapatite and graphene) along with a series of amino acids to successfully elucidate how distinct interfacial features dictate the delicate balance between entropy and enthalpy variations. The adsorption of all amino acids on the hydroxyapatite surface is an enthalpy-dominated process, where the water-induced enthalpic component of the free energy and the surface-adsorbate electrostatic interaction term alternatively act as the driving force for adsorption in different regions of the surface. Although favorable interactions are observed between amino acids and the graphene surface, the entropy-enthalpy compensation exhibits dependence on the molecular size of the adsorbates. For small amino acids, favorable enthalpy changes predominantly determine their adsorption behavior; however, larger amino acids tend to bind more tightly with the graphene surface, which is thermodynamically dominated by the entropy variations despite the structural characteristics of amino acids. This study reveals specific entropy-enthalpy mechanisms underlying amino acid adsorption at the solid-liquid interface, providing guidance for surface design and synthesis of new biomolecules.

19.
Glob Med Genet ; 11(1): 86-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38414979

ABSTRACT

The fusion genes NRG1 and NRG2 , members of the epidermal growth factor (EGF) receptor family, have emerged as key drivers in cancer. Upon fusion, NRG1 retains its EGF-like active domain, binds to the ERBB ligand family, and triggers intracellular signaling cascades, promoting uncontrolled cell proliferation. The incidence of NRG1 gene fusion varies across cancer types, with lung cancer being the most prevalent at 0.19 to 0.27%. CD74 and SLC3A2 are the most frequently observed fusion partners. RNA-based next-generation sequencing is the primary method for detecting NRG1 and NRG2 gene fusions, whereas pERBB3 immunohistochemistry can serve as a rapid prescreening tool for identifying NRG1 -positive patients. Currently, there are no approved targeted drugs for NRG1 and NRG2 . Common treatment approaches involve pan-ERBB inhibitors, small molecule inhibitors targeting ERBB2 or ERBB3, and monoclonal antibodies. Given the current landscape of NRG1 and NRG2 in solid tumors, a consensus among diagnostic and treatment experts is proposed, and clinical trials hold promise for benefiting more patients with NRG1 and NRG2 gene fusion solid tumors.

20.
Curr Med Imaging ; 20: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38389369

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the diagnostic value of magnetic resonance imaging (MRI) in staging and treatment of cervical cancer in pregnancy, and to evaluate the benefit of apparent diffusion coefficient (ADC) during neoadjuvant chemotherapy management. MATERIALS AND METHODS: This was a retrospective cohort study. Patients were divided into two groups according to the stage of cervical cancer. The mean term of pregnancy at the time of the diagnosis was the early second trimester (range 10-27 weeks) and the median age was 33 years (range 26-40 years). The abdominal and pelvic MRI images and clinical data of these patients were reviewed. Tumor size, local tumor spread, and nodal involvement were evaluated using an MRI dataset. The treatment and follow-up imaging were analyzed as well, and the ADC was measured before and after the chemotherapy. RESULTS: 16 patients with histopathologically confirmed cervical cancer during pregnancy were retrospectively enrolled. 7 patients were diagnosed with local cervical cancer (FIGO stage IAI) and designated as early stage group, as the lesion was invisible on MRI. In this group, pregnancies were allowed to continue until cesarean delivery (CD) at 38-41 weeks. The other 9 patients presenting with local or extensive cervical cancer (FIGO stage IB2-IIA2) were designated as the advanced-stage group. The lesion could be measured and analyzed on MRI. They were treated with neoadjuvant chemotherapy in pregnancy. Among them, 6 patients underwent TP regimen (paclitaxel 135~175 mg/m2 plus cisplatin 70~75 mg/m2), while 3 patients received TC regimen (paclitaxel 135~175 mg/m2 plus carboplatin AUC=5). NACT was performed for 1 to 2 courses before surgery. ADC demonstrated significant differences before and after chemotherapy administered during pregnancy (1.06 ± 0.12 sec/mm2 vs. 1.34 ± 0.21 sec/mm2). CONCLUSION: MRI has been found to be helpful in staging cervical cancer in pregnancy. Patients with stage IA confirmed by MRI can choose conservative treatment and continue the pregnancy until term birth. MRI can dynamically monitor the efficacy of chemotherapy for patients with stage IB and above during pregnancy. ADC value can have a potential role in the evaluation of chemotherapy efficacy.


Subject(s)
Uterine Cervical Neoplasms , Pregnancy , Female , Humans , Adult , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/drug therapy , Retrospective Studies , Chemotherapy, Adjuvant , Magnetic Resonance Imaging/methods , Carboplatin/therapeutic use , Paclitaxel/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...