Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 21807-21817, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634635

ABSTRACT

Radiative cooling is the process to dissipate heat to the outer space through an atmospheric window (8-13 µm), which has great potential for energy savings in buildings. However, the traditional "static" spectral characteristics of radiative cooling materials may result in overcooling during the cold season or at night, necessitating the development of dynamic spectral radiative cooling for enhanced energy saving potential. In this study, we showcase the realization of dynamic radiative cooling by modulating the heat transfer process using a tunable transmittance convection shield (TTCS). The transmittance of the TTCS in both solar spectrum and atmospheric window can be dynamically adjusted within ranges of 28.8-72.9 and 27.0-80.5%, with modulation capabilities of ΔTsolar = 44.1% and ΔT8-13 µm = 53.5%, respectively. Field measurements demonstrate that through the modulation, the steady-state temperature of the TTCS architecture is 0.3 °C lower than that of a traditional radiative cooling architecture during the daytime and 3.3 °C higher at nighttime, indicating that the modulation strategy can effectively address the overcooling issue, offering an efficient way of energy saving through dynamic radiative cooling.

2.
ACS Appl Mater Interfaces ; 15(12): 16277-16287, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36930799

ABSTRACT

Daytime radiative coolers cool objects below the air temperature without any electricity input, while most of them are limited by a silvery or whitish appearance. Colored daytime radiative coolers (CDRCs) with diverse colors, scalable manufacture, and subambient cooling have not been achieved. We introduce a polymer-Tamm photonic structure to enable a high infrared emittance and an engineered absorbed solar irradiance, governed by the quality factor (Q-factor). We theoretically determine the theoretical thresholds for subambient cooling through yellow, magenta, and cyan CDRCs. We experimentally fabricate and observe a temperature drop of 2.6-8.8 °C on average during the daytime and 4.0-4.4 °C during the nighttime. Furthermore, we demonstrate a scalable-manufactured magenta CDRC with a width of 60 cm and a length of 500 cm by a roll-to-roll deposition technique. This work provides guidelines for large-scale CDRCs and offers unprecedented opportunities for potential applications with energy-saving, aesthetic, and visual comfort demands.

3.
Phys Rev Lett ; 131(25): 253603, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181363

ABSTRACT

We realize collective enhancement and suppression of light scattered by an array of tweezer-trapped ^{87}Rb atoms positioned within a strongly coupled Fabry-Pérot optical cavity. We illuminate the array with light directed transverse to the cavity axis, in the low saturation regime, and detect photons scattered into the cavity. For an array with integer-optical-wavelength spacing each atom scatters light into the cavity with nearly identical scattering amplitude, leading to an observed N^{2} scaling of cavity photon number as the atom number increases stepwise from N=1 to N=8. By contrast, for an array with half-integer-wavelength spacing, destructive interference of scattering amplitudes yields a nonmonotonic, subradiant cavity intensity versus N. By analyzing the polarization of light emitted from the cavity, we find that Rayleigh scattering can be collectively enhanced or suppressed with respect to Raman scattering. We observe also that atom-induced shifts and broadenings of the cavity resonance are precisely tuned by varying the atom number and positions. Altogether, tweezer arrays provide exquisite control of atomic cavity QED spanning from the single- to the many-body regime.

4.
Phys Rev Lett ; 129(20): 203602, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36462020

ABSTRACT

Subsystem readout during a quantum process, or mid-circuit measurement, is crucial for error correction in quantum computation, simulation, and metrology. Ideal mid-circuit measurement should be faster than the decoherence of the system, high-fidelity, and nondestructive to the unmeasured qubits. Here, we use a strongly coupled optical cavity to read out the state of a single tweezer-trapped ^{87}Rb atom within a small tweezer array. Measuring either atomic fluorescence or the transmission of light through the cavity, we detect both the presence and the state of an atom in the tweezer, within only tens of microseconds, with state preparation and measurement infidelities of roughly 0.5% and atom loss probabilities of around 1%. Using a two-tweezer system, we find measurement on one atom within the cavity causes no observable hyperfine-state decoherence on a second atom located tens of microns from the cavity volume. This high-fidelity mid-circuit readout method is a substantial step toward quantum error correction in neutral atom arrays.

5.
Materials (Basel) ; 15(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36013610

ABSTRACT

In this paper, super-gravity solidification and cold-rolling were utilized to obtain Al-14.5Si alloys. The influence of annealing time on microstructure and mechanical properties of Al-14.5Si alloys was investigated. Our results indicated that high elongation was achieved by super-gravity solidification due to the submicron eutectic Si, making it possible to undertake the conventional cold-rolling. The yield strength (~214 ± 11 MPa) was significantly enhanced (~68.5%) after cold-rolling mainly due to high dislocation density. The coarsening of eutectic Si could be observed during annealing, which resulted in a decrease in yield strength. The elimination of internal stress and lattice distortion during annealing led to a decrease in micro-cracks/voids beneath the fracture surface during tensile testing, which in turn enhanced the elongation.

6.
Article in English | MEDLINE | ID: mdl-35834403

ABSTRACT

Scalable manufacturing of metamaterials with multispectral manipulation capabilities remains highly challenging, which was generally circumvented by integrating several single-spectral metamaterials, potentially leading to complex processes, large thicknesses, and limited fabrication size. We experimentally demonstrate a standalone and scalable-manufactured multispectral metamaterial featuring simultaneous visible transmission, infrared reflection, and microwave absorption. The prepared multispectral metamaterial with an area of 255 cm2 exhibits a visible transmittance of 74.5% at wavelengths of 400-700 nm (the highest 80.2% at 510 nm), a thermal emissivity of 0.08 at the infrared (IR) wavelengths of 2.5-20 µm (the lowest 0.03 at 19.5 µm), and a microwave absorptance of 63.4% at frequencies of 8.2-12.4 GHz (the near-perfect 97.4% at 11.5 GHz) on average with a deep-subwavelength thickness of λ/47. The deep-subwavelength multispectral metamaterial consists of a submillimeter-thick polyethylene terephthalate dielectric spacer sandwiched by a patterned ultrathin metal and a metal mesh back-reflector with ultralow sheet resistances. Unlike the conventional optically transparent microwave absorbers made from indium tin oxides, the surface plasmonic modes can be excited within the submillimeter-thick multispectral metamaterial, bringing about the gap plasmon polaritons-induced microwave attenuation, together with the excellent visible transparency and high IR reflection/low IR emissivity. This work may inspire the designs and practical production of standalone multispectral metamaterials and benefit the protection against ubiquitous IR and microwave reconnaissance without impeding visual observation.

7.
Phys Rev Lett ; 128(8): 083201, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35275676

ABSTRACT

We realize a scanning probe microscope using single trapped ^{87}Rb atoms to measure optical fields with subwavelength spatial resolution. Our microscope operates by detecting fluorescence from a single atom driven by near-resonant light and determining the ac Stark shift of an atomic transition from other local optical fields via the change in the fluorescence rate. We benchmark the microscope by measuring two standing-wave Gaussian modes of a Fabry-Pérot resonator with optical wavelengths of 1560 and 781 nm. We attain a spatial resolution of 300 nm, which is superresolving compared to the limit set by the 780 nm wavelength of the detected light. Sensitivity to short length scale features is enhanced by adapting the sensor to characterize an optical field via the force it exerts on the atom.

8.
Opt Lett ; 46(7): 1648-1651, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793508

ABSTRACT

We propose a multi-cavity resonant architecture that is established by employing two opposing ultrathin silver-based films to form a Fabry-Pérot (F-P) cavity and inserting one or two metallic mesh layers in between. Compared with the single F-P cavity, the multi-cavity architecture with one metallic mesh layer experimentally exhibits a ∼37% improvement in the average shielding effectiveness and maintains a transmittance over 80% at 550 nm. A more significant improvement of ∼108% in shielding effectiveness (SE) can be achieved by inserting two metallic mesh layers. The proposed multi-cavity architecture provides a strategy for removal of the hindrance to transparent electromagnetic interference shielding.

9.
Science ; 372(6539): 271-276, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33859030

ABSTRACT

Weyl semimetals are three-dimensional (3D) gapless topological phases with Weyl cones in the bulk band. According to lattice theory, Weyl cones must come in pairs, with the minimum number of cones being two. A semimetal with only two Weyl cones is an ideal Weyl semimetal (IWSM). Here we report the experimental realization of an IWSM band by engineering 3D spin-orbit coupling for ultracold atoms. The topological Weyl points are clearly measured via the virtual slicing imaging technique in equilibrium and are further resolved in the quench dynamics. The realization of an IWSM band opens an avenue to investigate various exotic phenomena that are difficult to access in solids.

10.
ACS Appl Mater Interfaces ; 12(23): 26659-26669, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32422036

ABSTRACT

As a potential risk to human and environmental health, radio frequency (RF) radiation should be studied due to the higher frequencies and larger bandwidths that may be employed. Electromagnetic interference (EMI) shielding materials can prevent exposure to RF radiation, but most of them are visibly opaque. In this work, we propose and fabricate visibly transparent EMI shielding materials using an ultrathin silver layer sandwiched by oxides (SLSO) as building blocks. The samples with a double-sided SLSO (D-SLSO) structure exhibit the highest EMI shielding effectiveness (SE) of 70 dB at 27.6 GHz (>62 dB on average at 4-40 GHz) and a transmittance close to 90% at a visible wavelength of 550 nm, which is comparable with those of polyethylene terephthalate (PET) and glass substrates. The D-SLSO structure plays a dual role: it suppresses optical reflections as antireflection coatings and enhances EMI shielding via Fabry-Pérot interference. In addition, we discuss the origin of the extraordinary frequency dependence of SE, which monotonically increases, contrary to that of conventional metallic mesh. This report describes SLSO-based transparent EMI shielding materials with record-high SE and visible transmittance that provide optoelectronic applications with robust safety and reliability under RF radiation with high and broad frequencies.

11.
ACS Nano ; 14(2): 1560-1568, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32023036

ABSTRACT

Exploiting stretchable solar cells that can accommodate large strain and feature high cyclic mechanical endurance is challenging for wearable and skin-interfaced electronics application. In this work, we demonstrated such solar cells using the kirigami design. Experiments and mechanical simulations showed that the kirigami structure effectively imparted stretchability to perovskite solar cells (PSCs) through out-of-plane deformation, which significantly reduced the stress in devices. The kirigami-based PSCs with optimal geometric parameters exhibited high mechanical deformability, including stretchability (strain up to 200%), twistability (angle up to 450°), and bendability (radius down to 0.5 mm). More importantly, the kirigami PSCs revealed high mechanical endurance with almost unchanged performance even after 1000 repetitive stretching, twisting, and bending cycles. This kirigami design for stretchable PSCs presented here provides a promising strategy to achieve high deformability for solar cells as well as other optoelectronic devices.

12.
Sci Bull (Beijing) ; 65(24): 2080-2085, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-36732960

ABSTRACT

There is an immense effort in search for various types of Weyl semimetals, of which the most fundamental phase consists of the minimal number of i.e. two Weyl points, but is hard to engineer in solids. Here we demonstrate how such fundamental Weyl semimetal can be realized in a maneuverable optical Raman lattice, with which the three-dimensional (3D) spin-orbit (SO) coupling is synthesised for ultracold atoms. In addition, a new novel Weyl phase with coexisting Weyl nodal points and nodal ring is also predicted here, and is shown to be protected by nontrivial linking numbers. We further propose feasible techniques to precisely resolve 3D Weyl band topology through 2D equilibrium and dynamical measurements. This work leads to the first realization of the most fundamental Weyl semimetal band and the 3D SO coupling for ultracold quantum gases, which are respectively the significant issues in the condensed matter and ultracold atom physics.

13.
ACS Appl Mater Interfaces ; 10(5): 4993-4999, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29319297

ABSTRACT

In this work, we developed a universal low-temperature process for the preparation of multifunctional and robust mesoporous silica antireflective coatings on transparent polymeric substrates. The mesoporous silica layer was formed after UV-O3 exposure and ammonia vapor treatment of dried poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (F127)-containing acidic silica gel. The optical and antiscrubbing properties of the mesoporous silica coating were comparable to those of the coating prepared at 250 °C. The highest optical transmittance reached 99.55%, and the transmittance loss was only 1.02% after 400 scrubbing cycles. The coating surface formed by the low-temperature process was hydrophilic, resulting in excellent antifogging properties. The low-temperature process was successfully applied on various transparent polymeric substrates including polyimide, polyethylene terephthalate, polyethylene naphthalate, and polycarbonate. The excellent optical and mechanical performances of the mesoporous silica antireflective coatings on transparent polymeric substrates allow a wide range of practical applications, especially in the field of flexible electronics.

14.
Opt Lett ; 42(15): 2894-2897, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28957201

ABSTRACT

Conventional antireflection coatings (ARCs), including single- and multi-layer, bionic micro/nano, and gradient-index structures, often do not take anomalous dispersive materials into account, but normal dispersion and Rayleigh configuration, known as a step-down index profile, in which low refractive index (RI) materials are adjacent to incident media and the high RI ones, are located on substrates. We found that the anomalous dispersive materials could be good candidates for novel sub-100 nm ARCs, considering the ab-initio impedance matching designs. Engineering the anomalous dispersion of co-sputtering Ag-AZO hybrid materials, two types of ARCs were fabricated on silicon substrates: a 70 nm tri-layer reverse-Rayleigh and a 140 nm bi-layer Rayleigh for comparison. We observed that both exhibited the average reflectance of 5.46% and 1.49% at the wavelength range from 400 to 780 nm, respectively, and were much lower than that of bare silicon, 38.02%, where the underlying origin for the reverse-Rayleigh AR was discussed. The studies on the engineering and integration of anomalous dispersive materials into ARCs and optical elements would be of great significance for compact light harvesting, energy conversion, and radar stealth technology.

15.
ACS Appl Mater Interfaces ; 6(3): 1415-23, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24443948

ABSTRACT

Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

16.
Opt Express ; 18(20): 20912-7, 2010 Sep 27.
Article in English | MEDLINE | ID: mdl-20940986

ABSTRACT

Plasmonic electromagnetically-induced transparency (EIT) can be excited by a single optical field unlike EIT in atom system, since the coupling between the bright and the dark modes is inherently induced through the near-field interaction in metamaterials. As a result, the complexity of the experimental realization can be reduced significantly, while the tunability is lost inevitably.We suggest a scheme that the plasmonic EIT is possible to be actively manipulated even by the single optical field. The bright and the dark modes are selective to be either coupled or uncoupled, depending on the angle of incidence. Even though the mechanical control has the disadvantage for high-speed applications, it paves the way for active manipulation of plasmonic EIT and benefits the clarification of its origin.

17.
Opt Express ; 18(17): 17736-47, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721160

ABSTRACT

We have studied electromagnetically induced transparency (EIT) in metamaterials for various schemes corresponding to those in an atomic medium. We numerically calculate a symmetric dolmen scheme of metamaterials corresponding to a tripod model of EIT-based optical switching and illustrate plasmonic double dark resonances. Our study provides a fundamental understanding and useful guidelines in using metamaterials for plasmonic-based all-optical information processing.


Subject(s)
Manufactured Materials , Nanotechnology/methods , Optics and Photonics/methods , Refractometry/methods , Surface Plasmon Resonance , Computer Simulation , Models, Theoretical , Radiation
18.
Opt Express ; 18(13): 13396-401, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20588469

ABSTRACT

A broken symmetry is generally believed to be a prerequisite for plasmonic electromagnetically-induced transparency (EIT), since the asymmetry allows the excitation of the otherwise forbidden dark mode. Nevertheless, according to the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT, we show that plasmonic EIT can be achieved even in symmetric structures based on the second-order MPR. This not only sharpens our understanding of the existing concept, but also provides a profound insight into the plasmonic coherent interference in the near-field zone.


Subject(s)
Magnetics/methods , Optics and Photonics/methods , Quantum Theory , Surface Plasmon Resonance/methods , Electromagnetic Fields
19.
Opt Express ; 16(21): 16825-39, 2008 Oct 13.
Article in English | MEDLINE | ID: mdl-18852790

ABSTRACT

The rigorous coupled-wave analysis with Airy-like internal-reflection series and Fourier-factorization for the calculation of the diffracted magneto-optical (MO) effects from polar and longitudinally magnetized gyrotropic gratings are fully described. For both gratings the numerical and experimental results are in good agreement, and the enhancement of Kerr rotation in higher orders compared to that of the 0th order diffraction is calculated as a function of grating depth. At last, this numerical method can be applied to many other applications such as extraordinary optical transmission from metallic gratings either through surface plasmon or cavity mode, and MO hysteresis loops.


Subject(s)
Computer-Aided Design , Models, Theoretical , Optical Devices , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Magnetics , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...