Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.485
Filter
1.
Front Nutr ; 11: 1345570, 2024.
Article in English | MEDLINE | ID: mdl-38706567

ABSTRACT

Background: Postoperative complications in adhesive small bowel obstruction (ASBO) significantly escalate healthcare costs and prolong hospital stays. This study endeavors to construct a nomogram that synergizes computed tomography (CT) body composition data with inflammatory-nutritional markers to forecast postoperative complications in ASBO. Methods: The study's internal cohort consisted of 190 ASBO patients recruited from October 2017 to November 2021, subsequently partitioned into training (n = 133) and internal validation (n = 57) groups at a 7:3 ratio. An additional external cohort comprised 52 patients. Body composition assessments were conducted at the third lumbar vertebral level utilizing CT images. Baseline characteristics alongside systemic inflammatory responses were meticulously documented. Through univariable and multivariable regression analyses, risk factors pertinent to postoperative complications were identified, culminating in the creation of a predictive nomogram. The nomogram's precision was appraised using the concordance index (C-index) and the area under the receiver operating characteristic (ROC) curve. Results: Postoperative complications were observed in 65 (48.87%), 26 (45.61%), and 22 (42.31%) patients across the three cohorts, respectively. Multivariate analysis revealed that nutrition risk score (NRS), intestinal strangulation, skeletal muscle index (SMI), subcutaneous fat index (SFI), neutrophil-lymphocyte ratio (NLR), and lymphocyte-monocyte ratio (LMR) were independently predictive of postoperative complications. These preoperative indicators were integral to the nomogram's formulation. The model, amalgamating body composition and inflammatory-nutritional indices, demonstrated superior performance: the internal training set exhibited a 0.878 AUC (95% CI, 0.802-0.954), 0.755 accuracy, and 0.625 sensitivity; the internal validation set displayed a 0.831 AUC (95% CI, 0.675-0.986), 0.818 accuracy, and 0.812 sensitivity. In the external cohort, the model yielded an AUC of 0.886 (95% CI, 0.799-0.974), 0.808 accuracy, and 0.909 sensitivity. Calibration curves affirmed a strong concordance between predicted outcomes and actual events. Decision curve analysis substantiated that the model could confer benefits on patients with ASBO. Conclusion: A rigorously developed and validated nomogram that incorporates body composition and inflammatory-nutritional indices proves to be a valuable tool for anticipating postoperative complications in ASBO patients, thus facilitating enhanced clinical decision-making.

2.
ACS Omega ; 9(18): 20593-20600, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737086

ABSTRACT

It has recently been observed that the temperature(T)-dependence of KIEs in H-tunneling reactions, characterized by isotopic activation energy difference (ΔEa = EaD - EaH), is correlated to the rigidity of the tunneling ready states (TRSs) in enzymes. A more rigid system with narrowly distributed H-donor-acceptor distances (DADs) at the TRSs gives rise to a weaker T-dependence of KIEs (i.e., a smaller ΔEa). Theoreticians have attempted to develop new H-tunneling models to explain this, but none has been universally accepted. In order to further understand the observations in enzymes and provide useful data to build new theoretical models, we have studied the electronic and solvent effects on ΔEa's for the hydride-tunneling reactions of NADH/NAD+ analogues. We found that a tighter charge-transfer (CT) complex system gives rises to a smaller ΔEa, consistent with the enzyme observations. In this paper, we use the remote heavy group (R) vibrational effects to mediate the system rigidity to study the rigidity-ΔEa relationship. The specific hypothesis is that slower vibrations of a heavier remote group would broaden the DAD distributions and increase the ΔEa value. Four NADH/NAD+ systems were studied in acetonitrile but most of such heavy group vibrations do not appear to significantly increase the ΔEa. The remote heavy group vibrations in these systems may have not affected the CT complexation rigidity to a degree that can significantly increase the DADs, and further, the ΔEa values.

3.
Int J Neurosci ; : 1-15, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738478

ABSTRACT

BACKGROUND: Sciatica is a phrase used to describe radiating leg discomfort. The most common cause is lumbar disc herniation (LDH), which is considered to start in the nucleus pulposus. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in LDH, remain largely unexplored and are a subject of ongoing research. METHODS: The junction of the weighted correlation network analysis (WGCNA) test with 6 FAMGs enabled the finding of FAMGs. Gene set variation analysis (GSVA) was used to identify the possible biological activities and pathways of FAMGs. LASSO was used to determine diagnostic effectiveness of the four FAMGs in diagnosing LDH. GSE124272, GSE147383, GSE150408, and GSE153761 were utilized to confirm the levels of expression of four FAMGs. RESULTS: Four FAMGs were discovered [Acyl-CoA Thioesterase 4 (ACOT4), Cytochrome P450 Family 4 Subfamily A Member 11 (CYP4A11), Acyl-CoA Dehydrogenase Long Chain (ACADL), Enoyl-CoA Hydratase and 3-Hydroxyacyl CoA Dehydrogenase (EHHADH)] For biological function analysis, mhc class ib receptor activity, response to thyroxine, response to l phenylalanine derivative were emphasized. CONCLUSIONS: FAMGs can help with prognosis and immunology, and provide evidence for fatty acid metabolism-related targeted therapeutics. In LDH, FAMGs and their interactions with immune cells might be therapeutic targets.

4.
Healthcare (Basel) ; 12(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786438

ABSTRACT

Disabled older adults exhibited a higher risk for cognitive impairment. Early identification is crucial in alleviating the disease burden. This study aims to develop and validate a prediction model for identifying cognitive impairment among disabled older adults. A total of 2138, 501, and 746 participants were included in the development set and two external validation sets. Logistic regression, support vector machine, random forest, and XGBoost were introduced to develop the prediction model. A nomogram was further established to demonstrate the prediction model directly and vividly. Logistic regression exhibited better predictive performance on the test set with an area under the curve of 0.875. It maintained a high level of precision (0.808), specification (0.788), sensitivity (0.770), and F1-score (0.788) compared with the machine learning models. We further simplified and established a nomogram based on the logistic regression, comprising five variables: age, daily living activities, instrumental activity of daily living, hearing impairment, and visual impairment. The areas under the curve of the nomogram were 0.871, 0.825, and 0.863 in the internal and two external validation sets, respectively. This nomogram effectively identifies the risk of cognitive impairment in disabled older adults.

5.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791295

ABSTRACT

To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 µg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Flavonols , Green Chemistry Technology , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Silver , Zebrafish , Animals , Methicillin-Resistant Staphylococcus aureus/drug effects , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Flavonols/pharmacology , Flavonols/chemistry , Green Chemistry Technology/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
6.
Bioact Mater ; 38: 292-304, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38745591

ABSTRACT

Delays in infected wound healing are usually a result of bacterial infection and local inflammation, which imposes a significant and often underappreciated burden on patients and society. Current therapies for chronic wound infection generally suffer from limited drug permeability and frequent drug administration, owing to the existence of a wound biofilm that acts as a barrier restricting the entry of various antibacterial drugs. Here, we report the design of a biocompatible probiotic-based microneedle (MN) patch that can rapidly deliver beneficial bacteria to wound tissues with improved delivery efficiency. The probiotic is capable of continuously producing antimicrobial substances by metabolizing introduced glycerol, thereby facilitating infected wound healing through long-acting antibacterial and anti-inflammatory effects. Additionally, the beneficial bacteria can remain highly viable (>80 %) inside MNs for as long as 60 days at 4 °C. In a mouse model of Staphylococcus aureus-infected wounds, a single administration of the MN patch exhibited superior antimicrobial efficiency and wound healing performance in comparison with the control groups, indicating great potential for accelerating infected wound closure. Further development of live probiotic-based MN patches may enable patients to better manage chronically infected wounds.

7.
Front Public Health ; 12: 1333487, 2024.
Article in English | MEDLINE | ID: mdl-38699428

ABSTRACT

Background: Iruplinalkib is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) with efficacy in patients with ALK-positive crizotinib-resistant advanced non-small cell lung cancer (NSCLC), which is independently developed by a Chinese pharmaceutical company. This study examined the cost-effectiveness of iruplinalkib versus alectinib in the Chinese healthcare setting. Methods: A partitioned survival model was developed to project the economic and health outcomes. Efficacy was derived using unanchored matching-adjusted indirect comparison (MAIC). Cost and utility values were obtained from the literature and experts' opinions. Deterministic and probabilistic sensitivity analyses (PSA) were carried out to evaluate the model's robustness. Results: Treatment with iruplinalkib versus alectinib resulted in a gain of 0.843 quality-adjusted life years (QALYs) with incremental costs of $20,493.27, resulting in an incremental cost-effectiveness ratio (ICER) of $24,313.95/QALY. Parameters related to relative efficacy and drug costs were the main drivers of the model outcomes. From the PSA, iruplinalkib had a 90% probability of being cost-effective at a willingness-to-pay threshold of $37,863.56/QALY. Conclusion: Compared to alectinib, iruplinalkib is a cost-effective therapy for patients with ALK-positive crizotinib-resistant advanced NSCLC.


Subject(s)
Anaplastic Lymphoma Kinase , Carbazoles , Carcinoma, Non-Small-Cell Lung , Cost-Benefit Analysis , Crizotinib , Drug Resistance, Neoplasm , Lung Neoplasms , Piperidines , Quality-Adjusted Life Years , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carbazoles/therapeutic use , Carbazoles/economics , China , Crizotinib/therapeutic use , Piperidines/therapeutic use , Piperidines/pharmacology , Anaplastic Lymphoma Kinase/metabolism , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/economics , Male , Female , Middle Aged
8.
Elife ; 132024 May 28.
Article in English | MEDLINE | ID: mdl-38805545

ABSTRACT

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Subject(s)
Cartilage, Articular , Hippo Signaling Pathway , Homeostasis , Osteoarthritis , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Cartilage, Articular/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , beta Catenin/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
9.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560847

ABSTRACT

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Subject(s)
Photoacoustic Techniques , Remote Sensing Technology , Photoacoustic Techniques/methods , Rheology/methods , Ultrasonography/methods , Microscopy/methods
10.
Front Microbiol ; 15: 1301204, 2024.
Article in English | MEDLINE | ID: mdl-38591032

ABSTRACT

Introduction: Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods: In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion: The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.

11.
J Hosp Med ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594918

ABSTRACT

BACKGROUND: New-onset atrial fibrillation (AF) during sepsis is common, but models designed to stratify stroke risk excluded patients with secondary AF. We assessed the predictive validity of CHA2DS2VASc scores among patients with new-onset AF during sepsis and developed a novel stroke prediction model incorporating presepsis and intrasepsis characteristics. METHODS: We included patients ≥40 years old who survived hospitalizations with sepsis and new-onset AF across 21 Kaiser Permanente Northern California hospitals from January 1, 2011 to September 30, 2017. We calculated the area under the receiver operating curve (AUC) for CHA2DS2VASc scores to predict stroke or transient ischemic attack (TIA) within 1 year after a hospitalization with new-onset AF during sepsis using Fine-Gray models with death as competing risk. We similarly derived and validated a novel model using presepsis and intrasepsis characteristics associated with 1-year stroke/TIA risk. RESULTS: Among 82,748 adults hospitalized with sepsis, 3992 with new-onset AF (median age: 80 years, median CHA2DS2VASc of 4) survived to discharge, among whom 70 (2.1%) experienced stroke or TIA outcome and 1393 (41.0%) died within 1 year of sepsis. The CHA2DS2VASc score was not predictive of stroke risk after sepsis (AUC: 0.50, 95% confidence interval [CI]: 0.48-0.52). A newly derived model among 2555 (64%) patients in the derivation set and 1437 (36%) in the validation set included 13 variables and produced an AUC of 0.61 (0.49-0.73) in derivation and 0.54 (0.43-0.65) in validation. CONCLUSION: Current models do not accurately stratify risk of stroke following new-onset AF secondary to sepsis. New tools are required to guide anticoagulation decisions following new-onset AF in sepsis.

13.
J Int Med Res ; 52(4): 3000605241245004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635889

ABSTRACT

Pregabalin is the first-line treatment for neuropathic pain. Cases of cutaneous hypersensitivity reactions caused by pregabalin generally occur within 2 weeks of initiating medication. We report a rare case of a delayed cutaneous hypersensitivity reaction caused by pregabalin, which was confirmed by a drug provocation test. A 72-year-old man with severe herpes zoster neuralgia developed maculopapular drug eruption covering 80% to 90% of his total body surface area after 40 days of combined multidrug analgesia. A drug provocation test for pregabalin was positive. The time interval between initiating medication and the onset of the patient's rash was the longest and he also had the largest area of skin affected compared with patients with a similar condition in previous related reports. Remaining vigilant for possible adverse cutaneous hypersensitivity reactions during treatment is important because of the long-term course of pregabalin treatment for neuropathic pain.


Subject(s)
Dermatitis, Atopic , Neuralgia , Male , Humans , Aged , Pregabalin/adverse effects , Analgesics/adverse effects , Skin , Neuralgia/drug therapy , Administration, Cutaneous
14.
Environ Toxicol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644733

ABSTRACT

Cadmium (Cd) is a pervasive environmental contaminant and a significant risk factor for liver injury. The present study was undertaken to evaluate the involvement of ferroptosis and neutrophil extracellular traps (NETs) in Cd-induced liver injury in Nile tilapia (Oreochromis niloticus), and to explore its underlying mechanism. Cd-induced liver injury was associated with increased total iron, malondialdehyde (MDA), and Acyl-CoA synthetase long-chain family member 4 (ACSL4), together with reduced levels of glutathione, glutathione peroxidase-4a (Gpx4a), and solute carrier family 7 member 11 (SLC7A11), which are all hallmarks of ferroptosis. Moreover, liver hyperemia, neutrophil infiltration, increased inflammatory factors and myeloperoxidase, as well as elevated serum DNA content in Cd-stimulated Nile tilapia suggested that a considerable number of neutrophils were recruited to the liver. Furtherly, in vitro experiments demonstrated that Cd induced the formation of NETs, and the possible mechanism was related to the generation of reactive oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, along with the P38 and extracellular regulated protein kinase (ERK) signaling pathways. We concluded that ferroptosis and NETs are the critical mechanisms contributing to Cd-induced liver injury in Nile tilapia. These findings will contribute to Cd toxicological studies in aquatic animals.

15.
Sci Rep ; 14(1): 9496, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664484

ABSTRACT

Disposable bamboo chopsticks (DBCs) are difficult to recycle, which inevitably cause secondary pollution. Based on energy and environmental issues, we propose a facile strategy to fabricate floatable photocatalyst (fPC) coated onto DBCs, which can be flexibly used in water purification. The photocatalyst of titania and titanium carbide on bamboo (TiO2/TiC@b) was successfully constructed from TiC-Ti powders and DBCs using a coating technique followed heat treatment in carbon powder, and the fPC exhibited excellent photocatalytic activity under visible light irradation. The analysis results indicate that rutile TiO2 forms on TiC during heat treatment, achieving a low-density material with an average value of approximately 0.5233 g/cm3. The coatings of TiO2/TiC on the bamboo are firm and uniform, with a particle size of about 20-50 nm. XPS results show that a large amount of oxygen vacancies is generated, due to the reaction atmosphere of more carbon and less oxygen, further favoring to narrowing the band gap of TiO2. Furthermore, TiO2 formed on residual TiC would induce the formation of a heterojunction, which effectively inhibits the photogenerated electron-hole recombination via the charge transfer effect. Notably, the degradation of dye Rhodamine B (Rh.B) is 62.4% within 3 h, while a previous adsorption of 36.0% for 1 h. The excellent photocatalytic performance of TiO2/TiC@b can be attributed to the enhanced reaction at the water/air interface due to the reduced light loss in water, improved visible-light response, increased accessible area and charge transfer effect. Our findings show that the proposed strategy achieves a simple, low-cost, and mass-producible method to fabricate fPC onto the used DBCs, which is expected to applied in multiple fields, especially in waste recycling and water treatment.

16.
Aging (Albany NY) ; 16(7): 6455-6477, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613794

ABSTRACT

Gastric cancer presents a formidable challenge, marked by its debilitating nature and often dire prognosis. Emerging evidence underscores the pivotal role of tumor stem cells in exacerbating treatment resistance and fueling disease recurrence in gastric cancer. Thus, the identification of genes contributing to tumor stemness assumes paramount importance. Employing a comprehensive approach encompassing ssGSEA, WGCNA, and various machine learning algorithms, this study endeavors to delineate tumor stemness key genes (TSKGs). Subsequently, these genes were harnessed to construct a prognostic model, termed the Tumor Stemness Risk Genes Prognostic Model (TSRGPM). Through PCA, Cox regression analysis and ROC curve analysis, the efficacy of Tumor Stemness Risk Scores (TSRS) in stratifying patient risk profiles was underscored, affirming its ability as an independent prognostic indicator. Notably, the TSRS exhibited a significant correlation with lymph node metastasis in gastric cancer. Furthermore, leveraging algorithms such as CIBERSORT to dissect immune infiltration patterns revealed a notable association between TSRS and monocytes and other cell. Subsequent scrutiny of tumor stemness risk genes (TSRGs) culminated in the identification of CDC25A for detailed investigation. Bioinformatics analyses unveil CDC25A's implication in driving the malignant phenotype of tumors, with a discernible impact on cell proliferation and DNA replication in gastric cancer. Noteworthy validation through in vitro experiments corroborated the bioinformatics findings, elucidating the pivotal role of CDC25A expression in modulating tumor stemness in gastric cancer. In summation, the established and validated TSRGPM holds promise in prognostication and delineation of potential therapeutic targets, thus heralding a pivotal stride towards personalized management of this malignancy.


Subject(s)
Machine Learning , Neoplastic Stem Cells , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Gene Expression Profiling
17.
Adv Mater ; : e2404360, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657134

ABSTRACT

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain.

18.
Int J Biol Macromol ; 267(Pt 1): 131428, 2024 May.
Article in English | MEDLINE | ID: mdl-38583834

ABSTRACT

Breast cancer is the second leading cause of cancer-related deaths among women worldwide. Despite significant advancements in chemotherapy, its effectiveness is often limited by poor drug distribution and systemic toxicity caused by the weak targeting ability of conventional therapeutic agents. The hypoxic tumor microenvironment (TME) also plays a vital role in treatment outcomes. Oral anticancer therapeutic agents have gained popularity and show promising results due to their ease of repeated administration. This study introduces autopilot biohybrids (Bif@BDC-NPs) for the effective delivery of doxorubicin (DOX) to the tumor site. This hybrid combines albumin-encapsulated DOX nanoparticles (BD-NPs) coated with chitosan (CS) for breast cancer chemotherapy, along with anaerobic Bifidobacterium infantis (B. infantis, Bif) serving as self-propelled motors. Due to Bif's specific anaerobic properties, Bif@BDC-NPs precisely anchor hypoxic regions of tumor tissue and significantly increase drug accumulation at the tumor site, thereby promoting tumor cell death. In an in-situ mouse breast cancer model, Bif@BDC-NPs achieved 94 % tumor inhibition, significantly prolonging the median survival of mice to 62 days, and reducing the toxic side effects of DOX. Therefore, the new bacteria-driven oral drug delivery system, Bif@BDC-NPs, overcomes multiple physiological barriers and holds great potential for the precise treatment of solid tumors.


Subject(s)
Breast Neoplasms , Chitosan , Doxorubicin , Nanoparticles , Chitosan/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Female , Nanoparticles/chemistry , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Administration, Oral , Humans , Drug Carriers/chemistry , Cell Line, Tumor , Tumor Microenvironment/drug effects , Drug Delivery Systems
19.
Ophthalmol Ther ; 13(6): 1757-1772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676875

ABSTRACT

INTRODUCTION: Chronic non-infectious uveitis affecting the posterior segment (NIU-PS), which can be recurrent and persistent for numerous years, mainly affects people of working age and significantly increases the risk of visual impairment. This study aimed to investigate the cost-effectiveness of fluocinolone acetonide intravitreal (FAI) implant in the treatment of patients with chronic NIU-PS from the Chinese healthcare perspective. METHODS: A Markov model with a 2-week cycle was constructed from the perspective of the Chinese healthcare system over a lifetime time horizon. The model consists of four health states: on-treatment, treatment failure, blindness, and death. The outcomes for effectiveness were based on the Chinese real-world study (RWS). Utilities and mortality rates were derived from published literature and standard sources. Costs were determined from the MENET website, prices of medical service items at local providers, published literature, and expert surveys. Outcomes were measured in quality-adjusted life years (QALYs). Sensitivity analyses were performed to account for the impact of uncertainty. RESULTS: It was estimated that in the base case, the FAI implant provided 0.43 incremental QALYs compared with the limited current practice (LCP) at an additional cost of $7503.72 (¥50,575.05), resulting in an incremental cost-effectiveness ratio (ICER) of $17,373.49 (¥117,097.33) per QALY gained. Parameters related to utility emerged as the primary influencers on the outcomes. In probabilistic sensitivity analysis (PSA), considering the willingness-to-pay (WTP) threshold of $19,072 (¥128,547) and $38,145 (¥257,094), the FAI implant had 67.70% and 99.50% probability of being cost-effective, respectively. As demonstrated in the scenario analysis, if the FAI implant aligns its price reduction with the average rate from the 2023 negotiation of the National Reimbursement Drug List (NRDL), it would result in lower costs and represent an absolute advantage. CONCLUSIONS: The FAI implant, which can effectively reduce the recurrence rate and maintain the incremental costs within the WTP limit, is likely to be cost-effective in treating chronic NIU-PS in China.

20.
Front Pharmacol ; 15: 1373663, 2024.
Article in English | MEDLINE | ID: mdl-38545549

ABSTRACT

Introduction: The objective of this study is to systematically evaluate the effect of ligustrazine on animal models of ischemic stroke and investigate its mechanism of action. Materials and Methods: The intervention of ligustrazine in ischemic diseases research on stroke model animals was searched in the Chinese National Knowledge Infrastructure (CNKI), Wanfang Database (Wanfang), VIP Database (VIP), Chinese Biomedical Literature Database (CBM), Cochrane Library, PubMed, Web of Science, and Embase databases. The quality of the included literature was evaluated using the Cochrane risk of bias tool. The evaluation included measures such as neurological deficit score (NDS), percentage of cerebral infarction volume, brain water content, inflammation-related factors, oxidative stress-related indicators, apoptosis indicators (caspase-3), and blood-brain barrier (BBB) permeability (Claudin-5). Results: A total of 32 studies were included in the analysis. The results indicated that ligustrazine significantly improved the neurological function scores of ischemic stroke animals compared to the control group (SMD = -1.84, 95% CI -2.14 to -1.55, P < 0.00001). It also reduced the percentage of cerebral infarction (SMD = -2.97, 95% CI -3.58 to -2.36, P < 0.00001) and brain water content (SMD = -2.37, 95% CI -3.63 to -1.12, P = 0.0002). In addition, ligustrazine can significantly improve various inflammatory factors such as TNF-α (SMD = -7.53, 95% CI -11.34 to -3.72, P = 0.0001), IL-1ß (SMD = -2.65, 95% CI -3.87 to -1.44, P < 0.0001), and IL-6 (SMD = -5.55, 95% CI -9.32 to -1.78, P = 0.004). It also positively affects oxidative stress-related indicators including SOD (SMD = 4.60, 95% CI 2.10 to 7.10, P = 0.0003), NOS (SMD = -1.52, 95% CI -2.98 to -0.06, P = 0.04), MDA (SMD = -5.31, 95% CI -8.48 to -2.14, P = 0.001), and NO (SMD = -5.33, 95% CI -8.82 to -1.84, P = 0.003). Furthermore, it shows positive effects on the apoptosis indicator caspase-3 (SMD = -5.21, 95% CI -7.47 to -2.94, P < 0.00001) and the expression level of the sex-related protein Claudin-5, which influences BBB permeability (SMD = 7.38, 95% CI 3.95 to 10.82, P < 0.0001). Conclusion: Ligustrazine has been shown to have a protective effect in animal models of cerebral ischemic injury. Its mechanism of action is believed to be associated with the reduction of inflammation and oxidative stress, the inhibition of apoptosis, and the repair of BBB permeability. However, further high-quality animal experiments are required to validate these findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...