Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Breed ; 43(12): 84, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009100

ABSTRACT

Drought is one of the major abiotic stresses affecting the maize production worldwide. As a cross-pollination crop, maize is sensitive to water stress at flowering stage. Drought at this stage leads to asynchronous development of male and female flower organ and increased interval between anthesis and silking, which finally causes failure of pollination and grain yield loss. In the present study, the expansin gene ZmEXPA5 was cloned and its function in drought tolerance was characterized. An indel variant in promoter of ZmEXPA5 is significantly associated with natural variation in drought-induced anthesis-silking interval. The drought susceptible haplotypes showed lower expression level of ZmEXPA5 than tolerant haplotypes and lost the cis-regulatory activity of ZmDOF29. Increasing ZmEXPA5 expression in transgenic maize decreases anthesis-silking interval and improves grain yield under both drought and well-watered environments. In addition, the expression pattern of ZmEXPA5 was analyzed. These findings provide insights into the genetic basis of drought tolerance and a promising gene for drought improvement in maize breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01432-x.

2.
Appl Opt ; 62(25): 6809-6815, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37706815

ABSTRACT

An extrinsic fiber optic Fabry-Perot interferometric (EFPI) ultrasonic sensor based on a grooved silicon diaphragm for partial discharge (PD) detection has been proposed. The size of the groove is determined by finite element simulation, which allows the resonant frequency of the sensor to meet the requirements of PD ultrasonic detection and improves the sensitivity of the sensor by 5.07 times compared with that based on a traditional circular diaphragm. The microelectro-mechanical system process is used to fabricate the diaphragm on a silicon-on-insulator wafer, and the prepared diaphragm has a grooved section with a diameter of 829.34 µm and a thickness of only 2.09 µm. At its resonant frequency of 61.5 kHz, the acoustic pressure sensitivity of the sensor is 172.42 mV/Pa. The ultrasonic signal detection capability of the sensor is verified in the PD experiment. Furthermore, the characteristics of the corona discharge are successfully manifested based on the ultrasonic waves detected by the EFPI sensor. It is demonstrated that the proposed sensor is suitable for PD detection due to its high sensitivity, simple production process, and good resistance to environmental interference.

3.
Plant Commun ; 3(4): 100331, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35643087

ABSTRACT

Along with rapid advances in high-throughput-sequencing technology, the development and application of molecular markers has been critical for the progress that has been made in crop breeding and genetic research. Desirable molecular markers should be able to rapidly genotype tens of thousands of breeding accessions with tens to hundreds of markers. In this study, we developed a multiplex molecular marker, the haplotype-tag polymorphism (HTP), that integrates Maize6H-60K array data from 3,587 maize inbred lines with 6,375 blocks from the recombination block map. After applying strict filtering criteria, we obtained 6,163 highly polymorphic HTPs, which were evenly distributed in the genome. Furthermore, we developed a genome-wide HTP analysis toolkit, HTPtools, which we used to establish an HTP database (HTPdb) covering the whole genomes of 3,587 maize inbred lines commonly used in breeding. A total of 172,921 non-redundant HTP allelic variations were obtained. Three major HTPtools modules combine seven algorithms (e.g., chain Bayes probability and the heterotic-pattern prediction algorithm) and a new plotting engine named "BCplot" that enables rapid visualization of the background information of multiple backcross groups. HTPtools was designed for big-data analyses such as complex pedigree reconstruction and maize heterotic-pattern prediction. The HTP-based analytical strategy and the toolkit developed in this study are applicable for high-throughput genotyping and for genetic mapping, germplasm resource analyses, and genomics-informed breeding in maize.


Subject(s)
Polymorphism, Single Nucleotide , Zea mays , Bayes Theorem , Genomics , Haplotypes , Plant Breeding , Zea mays/genetics
4.
ACS Omega ; 4(7): 12204-12211, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460335

ABSTRACT

To ensure the stable operation of gas-insulated equipment, removal of SF6 decomposition products of sulfur hexafluoride (SF6) is one of the best methods. SO2F2 is one of the typical decomposition products of SF6, while the Au-modified MoS2 (Au-MoS2) monolayer is a novel gas adsorbent. Therefore, based on the first-principles calculation, the adsorption properties of the SO2F2 molecule on the Au-MoS2 monolayer are calculated. Furthermore, the adsorption energy, charge transfer, and structure parameters were analyzed to obtain the most stable adsorption structure. These results indicate that all of the adsorption processes are exothermic. To better study the adsorption mechanism between the SO2F2 molecule and the Au-MoS2 monolayer, the density of states, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electron density difference were obtained. At last, we conclude that the interaction between the SO2F2 molecule and the Au-MoS2 monolayer was chemisorption. This study provides a theoretical basis to prepare the Au-MoS2 monolayer for the removal of SF6 decomposition products.

5.
Sci Rep ; 7(1): 10840, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883611

ABSTRACT

Maize (Zea mays, L.) cultivation has expanded greatly from tropical to temperate zones; however, its sensitivity to chilling often results in decreased germination rates, weak seedlings with reduced survival rates, and eventually lower yields. We conducted germination tests on the maize-282-diverse-panel (282 inbred lines) under normal (25 °C) and chilling (8 °C) conditions. Three raw measurements of germination were recorded under each condition: 1) germination rate, 2) days to 50% germination, and 3) germination index. Three relative traits were derived as indicators of cold-tolerance. By using the 2,271,584 single nucleotide polymorphisms (SNPs) on the panel from previous studies, and genome-wide association studies by using FarmCPU R package to identify 17 genetic loci associated with cold tolerance. Seven associated SNPs hit directly on candidate genes; four SNPs were in high linkage disequilibrium with candidate genes within 366 kb. In total, 18 candidate genes were identified, including 10 candidate genes supported by previous QTL studies and five genes supported by previous gene cloning studies in maize, rice, and Arabidopsis. Three new candidate genes revealed by two associated SNPs were supported by both QTL analyses and gene cloning studies. These candidate genes and associated SNPs provide valuable resources for future studies to develop cold-tolerant maize varieties.


Subject(s)
Adaptation, Physiological , Cold Temperature , Genome-Wide Association Study , Germination , Quantitative Trait Loci , Zea mays/growth & development , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...