Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
J Biomed Opt ; 29(9): 093503, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38715717

ABSTRACT

Significance: Hyperspectral dark-field microscopy (HSDFM) and data cube analysis algorithms demonstrate successful detection and classification of various tissue types, including carcinoma regions in human post-lumpectomy breast tissues excised during breast-conserving surgeries. Aim: We expand the application of HSDFM to the classification of tissue types and tumor subtypes in pre-histopathology human breast lumpectomy samples. Approach: Breast tissues excised during breast-conserving surgeries were imaged by the HSDFM and analyzed. The performance of the HSDFM is evaluated by comparing the backscattering intensity spectra of polystyrene microbead solutions with the Monte Carlo simulation of the experimental data. For classification algorithms, two analysis approaches, a supervised technique based on the spectral angle mapper (SAM) algorithm and an unsupervised technique based on the K-means algorithm are applied to classify various tissue types including carcinoma subtypes. In the supervised technique, the SAM algorithm with manually extracted endmembers guided by H&E annotations is used as reference spectra, allowing for segmentation maps with classified tissue types including carcinoma subtypes. Results: The manually extracted endmembers of known tissue types and their corresponding threshold spectral correlation angles for classification make a good reference library that validates endmembers computed by the unsupervised K-means algorithm. The unsupervised K-means algorithm, with no a priori information, produces abundance maps with dominant endmembers of various tissue types, including carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma. The two carcinomas' unique endmembers produced by the two methods agree with each other within <2% residual error margin. Conclusions: Our report demonstrates a robust procedure for the validation of an unsupervised algorithm with the essential set of parameters based on the ground truth, histopathological information. We have demonstrated that a trained library of the histopathology-guided endmembers and associated threshold spectral correlation angles computed against well-defined reference data cubes serve such parameters. Two classification algorithms, supervised and unsupervised algorithms, are employed to identify regions with carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma present in the tissues. The two carcinomas' unique endmembers used by the two methods agree to <2% residual error margin. This library of high quality and collected under an environment with no ambient background may be instrumental to develop or validate more advanced unsupervised data cube analysis algorithms, such as effective neural networks for efficient subtype classification.


Subject(s)
Algorithms , Breast Neoplasms , Mastectomy, Segmental , Microscopy , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Female , Mastectomy, Segmental/methods , Microscopy/methods , Breast/diagnostic imaging , Breast/pathology , Breast/surgery , Hyperspectral Imaging/methods , Margins of Excision , Monte Carlo Method , Image Processing, Computer-Assisted/methods
2.
World J Stem Cells ; 16(4): 389-409, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38690514

ABSTRACT

BACKGROUND: Osteoporosis (OP) has become a major public health problem worldwide. Most OP treatments are based on the inhibition of bone resorption, and it is necessary to identify additional treatments aimed at enhancing osteogenesis. In the bone marrow (BM) niche, bone mesenchymal stem cells (BMSCs) are exposed to a hypoxic environment. Recently, a few studies have demonstrated that hypoxia-inducible factor 2alpha (HIF-2α) is involved in BMSC osteogenic differentiation, but the molecular mechanism involved has not been determined. AIM: To investigate the effect of HIF-2α on the osteogenic and adipogenic differentiation of BMSCs and the hematopoietic function of hematopoietic stem cells (HSCs) in the BM niche on the progression of OP. METHODS: Mice with BMSC-specific HIF-2α knockout (Prx1-Cre;Hif-2αfl/fl mice) were used for in vivo experiments. Bone quantification was performed on mice of two genotypes with three interventions: Bilateral ovariectomy, semilethal irradiation, and dexamethasone treatment. Moreover, the hematopoietic function of HSCs in the BM niche was compared between the two mouse genotypes. In vitro, the HIF-2α agonist roxadustat and the HIF-2α inhibitor PT2399 were used to investigate the function of HIF-2α in BMSC osteogenic and adipogenic differentiation. Finally, we investigated the effect of HIF-2α on BMSCs via treatment with the mechanistic target of rapamycin (mTOR) agonist MHY1485 and the mTOR inhibitor rapamycin. RESULTS: The quantitative index determined by microcomputed tomography indicated that the femoral bone density of Prx1-Cre;Hif-2αfl/fl mice was lower than that of Hif-2αfl/fl mice under the three intervention conditions. In vitro, Hif-2αfl/fl mouse BMSCs were cultured and treated with the HIF-2α agonist roxadustat, and after 7 d of BMSC adipogenic differentiation, the oil red O staining intensity and mRNA expression levels of adipogenesis-related genes in BMSCs treated with roxadustat were decreased; in addition, after 14 d of osteogenic differentiation, BMSCs treated with roxadustat exhibited increased expression of osteogenesis-related genes. The opposite effects were shown for mouse BMSCs treated with the HIF-2α inhibitor PT2399. The mTOR inhibitor rapamycin was used to confirm that HIF-2α regulated BMSC osteogenic and adipogenic differentiation by inhibiting the mTOR pathway. Consequently, there was no significant difference in the hematopoietic function of HSCs between Prx1-Cre;Hif-2αfl/fl and Hif-2αfl/fl mice. CONCLUSION: Our study showed that inhibition of HIF-2α decreases bone mass by inhibiting the osteogenic differentiation and increasing the adipogenic differentiation of BMSCs through inhibition of mTOR signaling in the BM niche.

3.
Insect Mol Biol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613398

ABSTRACT

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621909

ABSTRACT

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Subject(s)
Brain Ischemia , Panax notoginseng , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Saponins , Triterpenes , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , von Willebrand Factor , Angiogenesis , Network Pharmacology , Rats, Sprague-Dawley , Saponins/pharmacology , Brain Ischemia/drug therapy , Cerebral Infarction
5.
Polymers (Basel) ; 16(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611217

ABSTRACT

Fluorinated polyurethane (FPU) is a new kind of polyurethane (PU) material with great applicational potential, which is attributed to its high bond energy C-F bonds. Its unique low surface energy, excellent thermal stability, and chemical stability have attracted considerable research attention. FPU with targeted performance can be precisely synthesized through designing fluorochemicals as hard segments, soft segments, or additives and changes to the production process to satisfy the needs of coatings, clothing textiles, and the aerospace and biomedical industries for materials that are hydrophobic and that are resistant to weathering, heat, and flames and that have good biocompatibility. Here, the synthesis, structure, properties, and applications of FPU are comprehensively reviewed. The aims of this research are to shed light on the design scheme, synthesis method, structure, and properties of FPU synthesized from different kinds of fluorochemicals and their applications in different fields and the prospects for the future development of FPU.

6.
J Am Chem Soc ; 146(14): 9871-9879, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38547318

ABSTRACT

Carbenes, recognized as potent intermediates, enable unique chemical transformations, and organoborons are pivotal in diverse chemical applications. As a hybrid of carbene and the boryl group, α-boryl carbenes are promising intermediates for the construction of organoborons; unfortunately, such carbenes are hard to access and have low structural diversity with their asymmetric transformations largely uncharted. In this research, we utilized boryl cyclopropenes as precursors for the swift synthesis of α-boryl metal carbenes, a powerful category of intermediates for chiral organoboron synthesis. These α-boryl carbenes undergo a series of highly enantioselective transfer reactions, including B-H and Si-H insertion, cyclopropanation, and cyclopropanation/Cope rearrangement, catalyzed by a singular chiral copper complex. This approach opens paths to previously unattainable but easily transformable chiral organoborons, expanding both carbene and organoboron chemistry.

7.
Pest Manag Sci ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488318

ABSTRACT

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.

8.
PLoS Negl Trop Dis ; 18(2): e0011987, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38381766

ABSTRACT

BACKGROUND: We examined the impact of the Clonorchis sinensis (C. sinensis) infection on the survival outcomes of spontaneous rupture Hepatocellular Carcinoma (srHCC) patients undergoing hepatectomy. METHODS: Between May 2013 and December 2021, 157 consecutive srHCC patients who underwent hepatectomy were divided into an no C. sinensis group (n = 126) and C. sinensis group (n = 31). To adjust for differences in preoperative characteristics an inverse probability of treatment weighting (IPTW) analysis was done, using propensity scores. Overall survival (OS) and recurrence-free survival (RFS) were compared before and after IPTW. Multivariate Cox regression analysis was performed to determine whether the C. sinensis infection was an independent prognostic factor after IPTW. RESULTS: In original cohort, the no C. sinensis group did not show a survival advantage over the C. sinensis group. After IPTW adjustment, the median OS for the C. sinensis group was 9 months, compared to 29 months for the no C. sinensis group. C. sinensis group have worse OS than no C. sinensis group (p = 0.024), while it did not differ in RFS(p = 0.065). The multivariate Cox regression analysis showed that C. sinensis infection and lower age were associated with worse OS. CONCLUSIONS: The C. sinensis infection has an adverse impact on os in srHCC patients who underwent hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Clonorchiasis , Clonorchis sinensis , Liver Neoplasms , Humans , Animals , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Rupture, Spontaneous/surgery , Rupture, Spontaneous/complications , Prognosis , Propensity Score , Clonorchiasis/complications , Clonorchiasis/surgery , Retrospective Studies
9.
Hepatol Int ; 18(1): 73-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159218

ABSTRACT

PURPOSE: Cytokeratin 19-positive cancer stem cells (CK19 + CSCs) and their tumor-associated macrophages (TAMs) have not been fully explored yet in the hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN: Single-cell RNA sequencing was performed on the viable cells obtained from 11 treatment-naïve HBV-associated HCC patients, including 8 CK19 + patients, to elucidate their transcriptomic landscape, CK19 + CSC heterogeneity, and immune microenvironment. Two in-house primary HCC cohorts (96 cases-related HBV and 89 cases with recurrence), TCGA external cohort, and in vitro and in vivo experiments were used to validate the results. RESULTS: A total of 64,581 single cells derived from the human HCC and adjacent normal tissues were sequenced, and 11 cell types were identified. The result showed that CK19 + CSCs were phenotypically and transcriptionally heterogeneous, co-expressed multiple hepatics CSC markers, and were positively correlated with worse prognosis. Moreover, the SPP1 + TAMs (TAM_SPP1) with strong M2-like features and worse prognosis were specifically enriched in the CK19 + HCC and promoted tumor invasion and metastasis by activating angiogenesis. Importantly, matrix metalloproteinase 9 (MMP9) derived from TAM_SPP1, as the hub gene of CK19 + HCC, was activated by the VEGFA signal. CONCLUSIONS: This study revealed the heterogeneity and stemness characteristics of CK19 + CSCs and specific immunosuppressive TAM_SPP1 in CK19 + HCC. The VEGFA signal can activate TAM_SPP1-derived MMP9 to promote the invasion and metastasis of CK19 + HCC tumors. This might provide novel insights into the clinical treatment of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , Matrix Metalloproteinase 9/genetics , Keratin-19/genetics , Keratin-19/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Neoplastic Stem Cells , Sequence Analysis, RNA , Tumor Microenvironment , Osteopontin/genetics , Osteopontin/metabolism
10.
BMC Cancer ; 23(1): 1150, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012581

ABSTRACT

BACKGROUND: The role of circulating tumor cells (CTCs) in prognosis prediction has been actively studied in hepatocellular carcinoma (HCC) patients. However, their efficiency in accurately predicting early progression recurrence (EPR) is unclear. This study aimed to investigate the clinical potential of preoperative CTCs to predict EPR in HCC patients after hepatectomy. METHODS: One hundred forty-five HCC patients, whose preoperative CTCs were detected, were enrolled. Based on the recurrence times and types, the patients were divided into four groups, including early oligo-recurrence (EOR), EPR, late oligo-recurrence (LOR), and late progression recurrence (LPR). RESULTS: Among the 145 patients, 133 (91.7%) patients had a postoperative recurrence, including 51 EOR, 42 EPR, 39 LOR, and 1 LPR patient. Kaplan-Meier survival curve analysis indicated that the HCC patients with EPR had the worst OS. There were significant differences in the total-CTCs (T-CTCs) and CTCs subtypes count between the EPR group with EOR and LOR groups. Cox regression analysis indicated that the T-CTC count of > 5/5 mL, the presence of microvascular invasion (MVI) and satellite nodules were the independent risk factors for EPR. The efficiency of T-CTCs was superior as compared to those of the other indicators in predicting EPR. Moreover, the combined model demonstrated a markedly superior area under the curve (AUC). CONCLUSIONS: The HCC patients with EPR had the worst OS. The preoperative CTCs was served as a prognostic indicator of EPR for HCC patients. The combined models, including T-CTCs, MVI, and satellite nodules, had the best performance to predict EPR after hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Cells, Circulating , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Prognosis , Hepatectomy , Neoplastic Cells, Circulating/pathology , Neoplasm Recurrence, Local/pathology , Retrospective Studies
11.
Angew Chem Int Ed Engl ; 62(51): e202315473, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37934194

ABSTRACT

Stereoconvergent transformation of E/Z mixtures of olefins to products with a single steric configuration is of great practical importance but hard to achieve. Herein, we report an iron-catalyzed stereoconvergent 1,4-hydrosilylation reactions of E/Z mixtures of readily available conjugated dienes for the synthesis of Z-allylsilanes with high regioselectivity and exclusive stereoselectivity. Mechanistic studies suggest that the reactions most likely proceed through a two-electron redox mechanism. The stereoselectivity of the reactions is ultimately determined by the crowded reaction cavity of the α-diimine ligand-modified iron catalyst, which forces the conjugated diene to coordinate with the iron center in a cis conformation, which in turn results in generation of an anti-π-allyl iron intermediate. The mechanism of this stereoconvergent transformation differs from previously reported mechanisms of other related reactions involving radicals or metal-hydride species.

12.
J Am Chem Soc ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906733

ABSTRACT

Cobalt-catalyzed enantioconvergent cross-coupling of α-bromoketones with aryl zinc reagents is achieved to access chiral ketones bearing α-tertiary stereogenic centers with high enantioselectivities. The more challenging and sterically hindered α-bromoketones bearing a 2-fluorophenyl group or ß-secondary and tertiary alkyl chains could also be well-tolerated. Adjusting the electronic effect of chiral unsymmetric N,N,N-tridentate ligands is critical for improving the reactivity and selectivity of this transformation, which is beneficial for further studies of asymmetric 3d metal catalysis via ligand modification. The control experiments and kinetic studies illustrated that the reaction involved radical intermediates and the reductive elimination was a rate-determining step.

13.
Eur J Surg Oncol ; 49(11): 107073, 2023 11.
Article in English | MEDLINE | ID: mdl-37748278

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) patients with clinically significant portal hypertension (CSPH) and beyond the Milan criteria undergoing hepatectomy were previously considered to be at high risk and to have a poor prognosis, especially for major hepatectomy. The aim of this study was to investigate the safety and efficacy of hepatectomy in those patients. METHODS: Data were collected on HCC patients with CSPH treated at a single centre from January 2010 to October 2021. Propensity score-matched (PSM) analysis was used to balance the bias between groups. RESULTS: Of the included patients, 556 underwent hepatectomy and 172 underwent transcatheter arterial chemoembolization (TACE). Comparison of patients beyond the Milan criteria and those with Milan criteria underwent hepatectomy, the 90-day mortality and complication rates were similar in the two groups. However, the overall survival (OS) and recurrence-free survival (RFS) of patients within the Milan criteria were significantly better than those beyond the Milan criteria (p < 0.001). In HCC patients beyond the Milan criteria, OS of performing hepatectomy was significantly longer than TACE (p < 0.001). Within HCC patients beyond the Milan criteria underwent hepatectomy, there was no significant difference in 90-day mortality and complications between minor and major hepatectomy in patients beyond the Milan criteria and no significant difference in RFS and OS after PSM. CONCLUSIONS: Hepatectomy for HCC patients with CSPH and beyond the Milan criteria is safe and feasible, with an acceptable prognosis and no significant difference between minor and major hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Hypertension, Portal , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Hepatectomy , Liver Neoplasms/complications , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Retrospective Studies , Prognosis , Hypertension, Portal/complications , Hypertension, Portal/surgery
14.
Foods ; 12(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569085

ABSTRACT

As countries increase their standard of living and individual income levels rise, there is a concomitant increase in the demand for animal-based protein. However, there are alternative sources. One of the alternatives available is that of increased direct human consumption of plant proteins. The quality of a dietary protein is an important consideration when discussing the merits of one protein source over another. The three most commonly used methods to express protein quality are the protein efficiency ratio (PER), a weight gain measurement; protein digestibility-corrected amino acid score (PDCAAS); and the digestible indispensable amino acid score (DIAAS). The possibility that alterations in the quality and quantity of protein in the diet could generate specific health outcomes is one being actively researched. Plant-based proteins may have additional beneficial properties for human health when compared to animal protein sources, including reductions in risk factors for cardiovascular disease and contributions to increased satiety. In this paper, the methods for the determination of protein quality and the potential beneficial qualities of plant proteins to human health will be described.

15.
Arch Insect Biochem Physiol ; 114(4): e22050, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37622383

ABSTRACT

Chitin plays an important role in the development and molting of insects. The key genes involved in chitin metabolism were considered promising targets for pest control. In this study, two splice variants of chitin deacetylase 2 (CDA2) from Diaphorina citri were identified, including DcCDA2a and DcCDA2b. Bioinformatics analysis revealed that DcCDA2a and DcCDA2b encoded 550 and 544 amino acid residues with a signal peptide, respectively. Spatio-temporal expression patterns analysis showed that DcCDA2a and DcCDA2b were highly expressed in D. citri wing and nymph stages. Moreover, DcCDA2a and DcCDA2b expression levels were induced by 20-hydroxyecdysone (20E). Silencing DcCDA2a by RNA interference (RNAi) significantly disrupted the D. citri molting and increased D. citri mortality and malformation rate, whereas inhibition of DcCDA2b resulted in a semimolting phenotype. Furthermore, silencing DcCDA2a and DcCDA2b significantly suppressed D. citri chitin and fatty acid metabolism. Our results indicated that DcCDA2 might play crucial roles in regulating D. citri chitin and fatty acid metabolism, and it could be used as a potential target for controlling D. citri.


Subject(s)
Citrus , Hemiptera , Animals , Hemiptera/physiology , Alternative Splicing , Chitin , Fatty Acids
16.
Chem Commun (Camb) ; 59(14): 1979-1982, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722997

ABSTRACT

An efficient method for the synthesis of isoquinolinone derivatives via photopromoted carboamination of alkynes is developed. Starting from the readily available propargyl alcohol derivatives, the polycyclic isoquinolinone derivatives could be obtained with good aryl and heterocycle tolerance. Both terminal and alkyl substituted alkynes could be employed. This protocol is operationally easy, and easily conducted on a gram-scale. A possible mechanism involving radical addition and cyclization following aromatization was proposed.

17.
Environ Int ; 173: 107839, 2023 03.
Article in English | MEDLINE | ID: mdl-36822004

ABSTRACT

The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.


Subject(s)
Acinetobacter baumannii , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/radiation effects , Drug Resistance, Microbial , Acridines , Carbapenems
18.
J Hepatocell Carcinoma ; 10: 57-68, 2023.
Article in English | MEDLINE | ID: mdl-36685111

ABSTRACT

Purpose: Recent studies indicated the vital role of platelet in enhancing the survival of circulating tumor cells (CTCs) in the blood, thereby stimulating the metastasis of tumors. CTCs have been considered an indicator of early tumor recurrence. Therefore, this study evaluated the prognostic potential of platelet count in predicting the early recurrence of hepatocellular carcinoma (HCC) in the presence of CTCs. Patients and Methods: 127 patients, whose preoperative CTCs were detected, were enrolled in this study. Univariate analysis was performed to identify the significant association of factors with the early recurrence of HCC, followed by multivariate analysis to determine the independent prognostic indicators. The prediction potential was evaluated using receiver operating characteristic (ROC) curves. Results: A total of 81 (63.7%) patients showed early HCC recurrence. The platelet count ≥225×109/L (hazard ratio, HR: 1.679, P = 0.041), CTCs >5/5 mL (HR: 2.467, P = 0.001), and presence of microvascular invasion (MVI) (HR: 2.580, P = 0.002) were independent factors correlated with the early recurrence of HCC in multivariate analysis. The prognostic potential of the combined CTCs-platelet count (0.738) was better than that of CTCs (0.703) and platelet (0.604) alone. The subgroup analysis, excluding 23 patients with pathological cirrhosis and splenomegaly, showed that the platelet count ≥225×109/L and CTCs >5/5 mL were also independent factors of early HCC recurrence. The prediction potential of the combined CTCs-platelet count was 0.753, which was better than that of the whole cohort. Kaplan-Meier survival curve analysis indicated that the HCC patients with high platelet or CTCs had the worse recurrence-free survival (RFS). Conclusion: The high platelet count was an independent factor of early HCC recurrence in the presence of CTCs. The combination of preoperative CTCs and platelet count could effectively predict the early recurrence of HCC. The subgroup analysis also showed similar results.

19.
BMC Cancer ; 23(1): 10, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36600214

ABSTRACT

BACKGROUND: Mesenchymal circulating tumor cells (M-CTCs) may be related to tumor progression, and Ki67 expression is known to be involved in tumor proliferation. The aim of the present study was to explore the relationship between M-CTCs and Ki67 in hepatocellular carcinoma (HCC) and their ability to predict prognosis. METHODS: Peripheral blood samples were obtained from 105 HCC patients before radical surgery. CTCs were isolated using CanPatrol enrichment and classified via in situ hybridization. Ki67 expression in HCC tissue was assessed through immunohistochemistry. Potential relationships of M-CTC, Ki67 with clinicopathological factors and prognosis were evaluated. Overall survival (OS) was analyzed using the Kaplan-Meier method and Cox regression. The prognostic efficacy of M-CTC, Ki67 and both together (M-CTC + Ki67) was assessed in terms of time-dependent receiver operating characteristic (ROC) curves and Harrell's concordance index. RESULTS: Of the 105 patients, 50 were positive for M-CTCs (count ≥ 1 per 5 mL) and 39 showed high Ki67 expression (≥ 50% tumor cells were Ki67-positive). The presence of M-CTC was significantly associated with alpha-fetoprotein (AFP) ≥ 400 ng/mL (P = 0.007), tumor size ≥ 5 cm (P = 0.023), multiple tumors (P < 0.001), poorly differentiated tumors (P = 0.003), incomplete tumor capsule (P < 0.001), Barcelona Clinic liver cancer (BCLC) stage B or C (P < 0.001), microvascular invasion (MVI) (P = 0.05) and portal vein tumor thrombosis (PVTT) (P = 0.006). High Ki67 expression correlated with AFP ≥ 400 ng/mL (P = 0.015), tumor size ≥ 5 cm (P = 0.012), incomplete tumor capsule (P < 0.001), MVI (P = 0.001), PVTT (P = 0.003), advanced BCLC stage (P = 0.01), and vessel carcinoma embolus (VCE) (P = 0.001). M-CTC positively correlated with Ki67. Patients positive for M-CTCs had a significantly shorter OS than patients negative for them. Similarly, high Ki67 expression was associated with a significantly lower OS. The high-risk group (positive for M-CTCs and high Ki67 expression) had worse OS than the other groups (P < 0.0001). Uni- and multivariate analyses showed that OS was independently predicted by M-CTC [hazard ratio (HR) 1.115; P < 0.001], Ki67 (HR 1.666; P = 0.046) and the combination of both (HR 2.885; P = 0.008). Based on ROC curves and the concordance index, the combination of M-CTC and Ki67 was superior to either parameter alone for predicting the OS of HCC patients. CONCLUSIONS: The presence of M-CTC correlates with high Ki67 expression in HCC patients, and both factors are associated with poor prognosis. Furthermore, the combination of M-CTC and Ki67 is a useful prognostic indicator for predicting OS in patients with HCC after hepatectomy, performing better than either parameter on its own.


Subject(s)
Carcinoma, Hepatocellular , Ki-67 Antigen , Neoplastic Cells, Circulating , Humans , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Ki-67 Antigen/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis
20.
Nano Lett ; 23(6): 2427-2435, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36715488

ABSTRACT

Neurotransmitter exocytosis of living cells plays a vital role in neuroscience. However, the available amperometric technique with carbon fiber electrodes typically measures exocytotic events from one cell during one procedure, which requires professional operations and takes time to produce statistical results of multiple cells. Here, we develop a functionally collaborative nanostructure to directly measure the neurotransmitter dopamine (DA) exocytosis from living rat pheochromocytoma (PC12) cells. The functionally collaborative nanostructure is constructed of metal-organic framework (MOF)-on-nanowires-on-graphene oxide, which is highly sensitive to DA molecules and enables direct detection of neurotransmitter exocytosis. Using the microsensor, the exocytosis from PC12 cells pretreated with the desired drugs (e.g., anticoronavirus drug, antiflu drug, or anti-inflammatory drug) has been successfully measured. Our achievements demonstrate the feasibility of the functionally collaborative nanostructure in the real-time detection of exocytosis and the potential applicability in the highly efficient assessment of the modulation effects of medications on exocytosis.


Subject(s)
Dopamine , Nanostructures , Animals , Rats , Electrodes , Exocytosis/physiology , Neurotransmitter Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...