Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 780
Filter
1.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833982

ABSTRACT

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.

2.
BMC Ecol Evol ; 24(1): 75, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844857

ABSTRACT

BACKGROUND: The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS: In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS: Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.


Subject(s)
Aquilegia , Gene Flow , Aquilegia/genetics , Genomics , China , Phylogeny , Hybridization, Genetic
3.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727307

ABSTRACT

Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.


Subject(s)
Cell Proliferation , Deep Learning , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Humans , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
4.
PLoS Med ; 21(5): e1004389, 2024 May.
Article in English | MEDLINE | ID: mdl-38728364

ABSTRACT

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Camptothecin , Cetuximab , Colorectal Neoplasms , Fluorouracil , Leucovorin , Liver Neoplasms , Organoplatinum Compounds , Proto-Oncogene Proteins B-raf , Humans , Cetuximab/administration & dosage , Cetuximab/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Male , Middle Aged , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Female , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Aged , Adult , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Treatment Outcome , ras Proteins/genetics
5.
Mol Cancer Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780897

ABSTRACT

Poly (ADP-ribose) polymerase inhibitors (PARPi) can encounter resistance through various mechanisms, limiting their effectiveness. Our recent research showed that PARPi alone can induce drug resistance by promoting autophagy. Moreover, our studies have revealed that anaplastic lymphoma kinase (ALK) plays a role in regulating the survival of ovarian cancer cells undergoing autophagy. Here, we explored whether the ALK-inhibitor crizotinib could enhance the efficacy of PARPi by targeting drug-induced autophagic ovarian cancer cell and xenograft models. Our investigation demonstrates that crizotinib enhances the anti-tumor activity of PARPi across multiple ovarian cancer cells. Combination therapy with crizotinib and olaparib reduced cell viability and clonogenic growth in two-olaparib resistant cell lines. More importantly, this effect was consistently observed in patient-derived organoids. Furthermore, combined treatment with crizotinib and olaparib led to tumor regression in human ovarian xenograft models. Mechanistically, the combination resulted in increased levels of reactive oxygen species (ROS), induced DNA damage, and decreased the phosphorylation of AKT, mTOR, and ULK-1, contributing to increased olaparib-induced autophagy and apoptosis. Notably, pharmacologic, or genetic inhibition or autophagy reduced the sensitivity of ovarian cancer cell lines to olaparib and crizotinib treatment, underscoring the role of autophagy in cell death. Blocking ROS mitigated olaparib/crizotinib-induced autophagy and cell death while restoring levels of phosphorylated AKT, mTOR and ULK-1. These findings suggest that crizotinib can improve the therapeutic efficacy of olaparib by enhancing autophagy. Implications: The combination of crizotinib and PARPi presents a promising strategy, that could provide a novel approach to enhance outcomes for patients with ovarian cancer.

6.
BMC Cardiovasc Disord ; 24(1): 278, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811882

ABSTRACT

BACKGROUND: Left ventricular thrombus (LVT) is a serious complication after myocardial infarction. However, due to its asymptomatic nature, early detection is challenging. We aimed to explore the differences in clinical correlates of LVT found in acute to subacute and chronic phases of myocardial infarction. METHODS: We collected data from 153 patients who were diagnosed with LVT after myocardial infarction at the Affiliated Hospital of Qingdao University from January 2013 to December 2022. Baseline information, inflammatory markers, transthoracic echocardiograph (TTE) data and other clinical correlates were collected. Patients were categorized into acute to subacute phase group (< 30 days) and chronic phase group (30 days and after) according to the time at which echocardiograph was performed. The resolution of thrombus within 90 days is regarded as the primary endpoint event. We fitted logistic regression models to relating clinical correlates with phase-specific thrombus resolution. RESULTS: For acute to subacute phase thrombus patients: C-reactive protein levels (OR: 0.95, 95% CI: 0.918-0.983, p = 0.003) were significantly associated with thrombus resolution. For chronic phase thrombus patients: anticoagulant treatment was associated with 5.717-fold odds of thrombus resolution (OR: 5.717, 95% CI: 1.543-21.18, p = 0.009). CONCLUSIONS: Higher levels of CRP were associated with lower likelihood of LVT resolution in acute phase myocardial infarction; Anticoagulant therapy is still needed for thrombus in the chronic stage of myocardial infarction.


Subject(s)
Thrombosis , Humans , Male , Female , Middle Aged , Time Factors , Thrombosis/diagnostic imaging , Thrombosis/etiology , Aged , Risk Factors , Anticoagulants/therapeutic use , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Retrospective Studies , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/diagnosis , Biomarkers/blood , Treatment Outcome , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Heart Diseases/diagnosis , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , China , Echocardiography , Ventricular Function, Left
7.
Nat Aging ; 4(5): 638-646, 2024 May.
Article in English | MEDLINE | ID: mdl-38724731

ABSTRACT

The uptake of COVID-19 booster vaccination among older adults in China is suboptimal. Here, we report the results of a parallel-group cluster-randomized controlled trial evaluating the efficacy of promoting COVID-19 booster vaccination among grandparents (≥60 years) through a health education intervention delivered to their grandchildren (aged ≥16 years) in a Chinese cohort (Chinese Clinical Trial Registry: ChiCTR2200063240 ). The primary outcome was the uptake rate of COVID-19 booster dose among grandparents. Secondary outcomes include grandparents' attitude and intention to get a COVID-19 booster dose. A total of 202 college students were randomized 1:1 to either the intervention arm of web-based health education and 14 daily reminders (n = 188 grandparents) or control arm (n = 187 grandparents) and reported their grandparents' COVID-19 booster vaccination status at baseline and 21 days. Grandparents in the intervention arm were more likely to receive COVID-19 booster vaccination compared to control cohort (intervention, 30.6%; control, 16.9%; risk ratio = 2.00 (95% CI, 1.09 to 3.66)). Grandparents in the intervention arm also had greater attitude change (ß = 0.28 (95% CI, 0.04 to 0.52)) and intention change (ß = 0.32 (95% CI, 0.12 to 0.52)) to receive a COVID-19 booster dose. Our results show that an educational intervention targeting college students increased COVID-19 booster vaccination uptake among grandparents in China.


Subject(s)
COVID-19 Vaccines , COVID-19 , Grandparents , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/prevention & control , Male , Female , China , COVID-19 Vaccines/administration & dosage , Middle Aged , Aged , Grandparents/psychology , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Vaccination/psychology , Health Education , Adolescent , Young Adult , Adult
8.
BMC Med ; 22(1): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769543

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS: In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS: Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION: NCT04766320, Jan 04, 2021.


Subject(s)
Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Humans , Female , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Animals , Aged , Adult , Mice , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/drug therapy , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use
9.
Chemosphere ; 361: 142445, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797212

ABSTRACT

The impact of thermally driven mountain-valley breezes (MVB) on the atmospheric environment remains poorly understood, especially in ozone (O3)-polluted regions with complex underlying topography. To address this knowledge gap, we focused on the western Sichuan Basin (SCB), situated immediately east of the Tibetan Plateau (TP), which is considered susceptible to MVB coupled with severe O3 pollution in southwest China. We revealed the MVB driving diurnal O3 variations and meteorological mechanisms using surface observations and ERA5 reanalysis data. Local MVB days accounted for up to 47% of cases in the summers of 2015-2022. Driven by the MVB, the near-surface O3 concentrations increased by 8.8%, with 12.7% and 50.0% deterioration in the O3 light and moderate exceedance rates, respectively, on the western SCB edge. The daytime upslope valley breeze with 20% higher wind speed drove the westward transport of rich O3 and precursors from the upwind-polluted inner SCB towards its western edge, and the O3 photochemical production, followed by intensifying solar radiation and air temperature, gave rise to 14.8% of surface O3 concentrations over the western SCB edge. The nighttime downward mountain breeze with a 20% increase in wind speed could transport the rich O3 in the mountainous area to the basin edge, causing O3 levels to increase by 2.8%. In summary, we quantitatively assessed the impacts of MVB on changes in O3 concentrations and air quality along with its meteorological mechanisms, facilitating a comprehensive understanding of meteorological drivers in the atmospheric environment.

10.
Bioact Mater ; 39: 25-40, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38800719

ABSTRACT

Zirconium-based metallic glasses (Zr-MGs) are demonstrated to exhibit high mechanical strength, low elastic modulus and excellent biocompatibility, making them promising materials for endosseous implants. Meanwhile, tantalum (Ta) is also well known for its ideal corrosion resistance and biological effects. However, the metal has an elastic modulus as high as 186 GPa which is not comparable to the natural bone (10-30 GPa), and it also has a relative high cost. Here, to fully exploit the advantages of Ta as endosseous implants, a small amount of Ta (as low as 3 at. %) was successfully added into a Zr-MG to generate an advanced functional endosseous implant, Zr58Cu25Al14Ta3 MG, with superior comprehensive properties. Upon carefully dissecting the atomic structure and surface chemistry, the results show that amorphization of Ta enables the uniform distribution in material surface, leading to a significantly improved chemical stability and extensive material-cell contact regulation. Systematical analyses on the immunological, angiogenesis and osteogenesis capability of the material are carried out utilizing the next-generation sequencing, revealing that Zr58Cu25Al14Ta3 MG can regulate angiogenesis through VEGF signaling pathway and osteogenesis via BMP signaling pathway. Animal experiment further confirms a sound osseointegration of Zr58Cu25Al14Ta3 MG in achieving better bone-implant-contact and inducing faster peri-implant bone formation.

11.
Blood Cells Mol Dis ; 107: 102858, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796983

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease caused by the loss of immune tolerance to platelet autoantigens, resulting in reduced platelet production and increased platelet destruction. Impaired megakaryocyte differentiation and maturation is a key factor in the pathogenesis and treatment of ITP. Sarcandra glabra, a plant of the Chloranthaceae family, is commonly used in clinical practice to treat ITP, and daucosterol (Dau) is one of its active ingredients. However, whether Dau can treat ITP and the key mechanism of its effect are still unclear. In this study, we found that Dau could effectively promote the differentiation and maturation of megakaryocytes and the formation of polyploidy in the megakaryocyte differentiation disorder model constructed by co-culturing Dami and HS-5 cells. In vivo experiments showed that Dau could not only increase the number of polyploidized megakaryocytes in the ITP rat model, but also promote the recovery of platelet count. In addition, through network pharmacology analysis, we speculated that the JAK2-STAT3 signaling pathway might be involved in the process of Dau promoting megakaryocyte differentiation. Western blot results showed that Dau inhibited the expression of P-JAK2 and P-STAT3. In summary, these results provide a basis for further studying the pharmacological mechanism of Dau in treating ITP.


Subject(s)
Cell Differentiation , Janus Kinase 2 , Megakaryocytes , Purpura, Thrombocytopenic, Idiopathic , STAT3 Transcription Factor , Signal Transduction , Megakaryocytes/metabolism , Megakaryocytes/drug effects , Megakaryocytes/cytology , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Cell Differentiation/drug effects , Animals , Signal Transduction/drug effects , Rats , Purpura, Thrombocytopenic, Idiopathic/metabolism , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Humans , Sitosterols/pharmacology , Male , Disease Models, Animal
12.
Chin J Integr Med ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733454

ABSTRACT

OBJECTIVE: To assess the efficacy and safety of Bufei Jiedu (BFJD) ranules as adjuvant therapy for patients with multidrug-resistant pulmonary tuberculosis (MDR-PTB). METHODS: A large-scale, multi-center, double-blinded, and randomized controlled trial was conducted in 18 sentinel hospitals in China from December 2012 to December 2016. A total of 312 MDR-PTB patients were randomly assigned to BFJD Granules or placebo groups (1:1) using a stratified randomization method, which both received the long-course chemotherapy regimen for 18 months (6 Am-Lfx-P-Z-Pto, 12 Lfx-P-Z-Pto). Meanwhile, patients in both groups also received BFJD Granules or placebo twice a day for a total of 18 months, respectively. The primary outcome was cure rate. The secondary outcomes included time to sputum-culture conversion, changes in lung cavities and quality of life (QoL) of patients. Adverse reactions were monitored during and after the trial. RESULTS: A total of 216 cases completed the trial, 111 in the BFJD Granules group and 105 in the placebo group. BFJD Granules, as an adjuvant treatment, increased the cure rate by 13.6% at the end of treatment, compared with the placebo (58.4% vs. 44.8%, P=0.02), and accelerated the median time to sputum-culture conversion (5 months vs. 11 months). The cavity closure rate of the BFJD Granules group (50.6%, 43/85) was higher than that of the placebo group (32.1%, 26/81; P=0.02) in patients who completed the treatment. At the end of the intensive treatment, according to the 36-item Short Form, the BFJD Granules significantly improved physical functioning, general health, and vitality of patients relative to the placebo group (all P<0.01). Overall, the death rates in the two groups were not significantly different; 5.1% (8/156) in the BFJD Granules group and 2.6% (4/156) in the placebo group. CONCLUSIONS: Supplementing BFJD Granules with the long-course chemotherapy regimen significantly increased the cure rate and cavity closure rates, and rapidly improved QoL of patients with MDR-PTB (Registration No. ChiCTR-TRC-12002850).

13.
Nat Prod Res ; : 1-7, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733627

ABSTRACT

Many marine organisms possess an essential capacity to produce secondary metabolites that exhibit toxic characteristics. A new polyhydroxy steroid, 24-methyl-5α-cholestane-24(28)-ene-3ß, 4ß, 6α, 7α, 8, 15ß, 16ß, 26-octol-6-O-sodium sulphate (1) was isolated from starfish (Asterina pectinifera), along with five polar steroid compounds (2-6) that were previously identified. NMR (1H and 13C NMR, 1H-1H COSY, HSQC, HMBC, and NOESY) and HR-ESI-MS were employed for structure elucidations. The embryotoxicity and teratogenicity of the isolated compounds were assessed using embryos of marine medaka (Oryzias melastigma). Compound 5 exhibited moderate embryotoxicity (96h-LC50: 65 µM).

14.
Vaccines (Basel) ; 12(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793763

ABSTRACT

Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.

15.
Int J Surg ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38652147

ABSTRACT

BACKGROUND: We aimed to compare combined intraoperative chemotherapy and surgical resection with curative surgical resection alone in colorectal cancer patients. METHODS: We performed a multicenter, open-label, randomized, phase III trial. All eligible patients were randomized and assigned to intraoperative chemotherapy and curative surgical resection or curative surgical resection alone (1:1). Survival actualization after long-term follow-up was performed in patients analyzed on an intention-to-treat basis. RESULTS: From January 2011 to January 2016, 696 colorectal cancer patients were enrolled and randomly assigned to intraoperative chemotherapy and radical surgical resection (n=341) or curative surgical resection alone (n=344). Intraoperative chemotherapy with surgical resection showed no significant survival benefit over surgical resection alone in colorectal cancer patients (3-year DFS: 91.1% vs. 90.0%, P=0.328; 3-year OS: 94.4% vs. 95.9%, P=0.756). However, colon cancer patients benefitted from intraoperative chemotherapy, with a relative 4% reduction in liver and peritoneal metastasis (HR=0.336, 95% CI: 0.148-0.759, P=0.015) and a 6.5% improvement in 3-year DFS (HR=0.579, 95% CI: 0.353-0.949, P=0.032). Meanwhile, patients with colon cancer and abnormal pretreatment CEA levels achieved significant survival benefits from intraoperative chemotherapy (DFS: HR=0.464, 95% CI: 0.233-0.921, P=0.029 and OS: (HR=0.476, 95% CI: 0.223-1.017, P=0.049). CONCLUSIONS: Intraoperative chemotherapy showed no significant extra prognostic benefit in total colorectal cancer patients who underwent radical surgical resection; however, in colon cancer patients with abnormal pretreatment serum CEA levels (> 5 ng/ml), intraoperative chemotherapy could improve long-term survival.

16.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571082

ABSTRACT

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

18.
Nanomaterials (Basel) ; 14(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607169

ABSTRACT

Amorphous alloys or metallic glasses (MGs) thin films have attracted extensive attention in various fields due to their unique functional properties. Here, we use in situ heating transmission electron microscopy (TEM) to investigate the thermal stability and crystallization behavior of Pd-Au-Si thin films prepared by a pulsed laser deposition (PLD) method. Upon heating treatment inside a TEM, we trace the structural changes in the Pd-Au-Si thin films through directly recording high-resolution images and diffraction patterns at different temperatures. TEM observations reveal that the Pd-Au-Si thin films started to nucleate with small crystalline embryos uniformly distributed in the glassy matrix upon approaching the glass transition temperature Tg=625K, and subsequently, the growth of crystalline nuclei into sub-10 nm Pd-Si nanocrystals commenced. Upon further increasing the temperature to 673K, the thin films transformed to micro-sized patches of stacking-faulty lamellae that further crystallized into Pd9Si2 and Pd3Si intermetallic compounds. Interestingly, with prolonged thermal heating at elevated temperatures, the Pd9Si2 transformed to Pd3Si. Simultaneously, the solute Au atoms initially dissolved in glassy alloys and eventually precipitated out of the Pd9Si2 and Pd3Si intermetallics, forming nearly spherical Au nanocrystals. Our TEM results reveal the unique thermal stability and crystallization processes of the PLD-prepared Pd-Au-Si thin films as well as demonstrate a possibility of producing a large quantity of pure nanocrystals out of amorphous solids for various applications.

19.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619682

ABSTRACT

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tubulin , Humans , Cell Proliferation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
20.
Adv Sci (Weinh) ; : e2309668, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38537163

ABSTRACT

Tin-based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead-based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin-based perovskite is conducted with a commonly employed ligand, iso-butylammonium iodide (iso-BAI). Unlike the passivation effects previously observed in lead-based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin-based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best-performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin-based perovskites from that of lead-based counterparts, but also underscores the critical role in designing tailor-made strategies for fabricating efficient tin-based PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...