Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(5): 6642-6649, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33444009

ABSTRACT

Materials that dynamically respond to their environment have diverse applications in artificial muscles, soft robotics, and smart textiles. Inspired by biological systems, humidity- and water-responsive actuators that bend, twist, and contract have been previously demonstrated. However, more powerful artificial muscles with large strokes and high work densities are needed, especially those that can be made cost-effectively from eco-friendly materials. We here derive such muscles from naturally abundant lotus fibers. A coiled lotus fiber yarn muscle provides a large, reversible tensile stroke of 38% and a work capacity during contraction of 450 J/kg, which is 56 times higher than that of natural skeletal muscles and higher than that for any other reported natural fiber muscles. In addition, highly twisted lotus fiber yarn muscles provide a fully reversible torsional stroke of 200°/mm of muscle length and a peak rotation speed of 200 rpm, with a generated specific torque of 488 mN·m/kg for a 2.5 cm long muscle. Potential applications of these lotus fiber yarn muscles are demonstrated for a weight-lifting artificial limb and a smart textile.


Subject(s)
Biomimetic Materials/chemistry , Humans , Humidity , Particle Size , Robotics , Surface Properties , Tensile Strength , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...