Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 78(7): 2762-2773, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34043026

ABSTRACT

The purpose of this study was to discuss the effects of an extract from the culture medium of Pseudomonas aeruginosa (P. aeruginosa) 2016NX1 (chloroform extract of P. aeruginosa, CEPA) and its purified product 1-hydroxyphenazine on RAW264.7 cell inflammation. Cell viability was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method. TNF-α production was determined by an ELISA method. The effects of CEPA and its purified product 1-hydroxyphenazine on cell morphology were investigated using an inverted microscope. Quantitative real-time PCR was performed to determine mRNA expression levels. CEPA and 1-hydroxyphenazine had no obvious toxicity to cells when their concentrations were no more than 20 µg ml-1 and 5 µg ml-1, respectively. Both CEPA and 1-hydroxyphenazine suppressed the secretion of TNF-α and significantly reduced the mRNA expression levels of TNF-α, IL-1ß, and IL-6. Both CEPA and 1-hydroxyphenazine inhibited M1 cell polarization after lipopolysaccharide (LPS) stimulation. The results in this article lay a good foundation for the biopharmaceutical applications of CEPA and 1-hydroxyphenazine in the future. CEPA and 1-hydroxyphenazine had certain anti-inflammatory activity, and inhibited LPS-induced RAW264.7 cell inflammation. Our findings suggest that CEPA and 1-hydroxyphenazine are potential chemicals with anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents , Pseudomonas aeruginosa , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation , Mice , NF-kappa B , Phenazines , Plant Extracts , RAW 264.7 Cells
2.
Curr Microbiol ; 77(11): 3661-3670, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32797267

ABSTRACT

The purpose of this study was to elaborate the characteristics of Pseudomonas sp. Cr13, including physiological and biochemical characteristics, optimization of growth conditions, minimum inhibitory concentration of Cr6+ and resistance to other heavy metals, removal efficiency of Cr6+, and antibiotics sensitivity. A strain Pseudomonas sp. Cr13 was screened from mine-contaminated soils, which could tolerate high concentration of Cr6+ (up to 250 mg l-1) and Cd2+ (50 mg l-1). The optimum pH, NaCl concentration, and temperature for growth were 6, 10% NaCl, and 30 °C, respectively. The removal efficiency of Cr6+ by strain Pseudomonas sp. Cr13 was studied. The removal efficiency of Cr6+ decreased with the increased concentration of Cr6+. Under the optimal conditions, the maximum of the removal rate can reach up to 94.26% in contaminated soils. In addition, antibiotics sensitivity of this strain was investigated. It was found that this strain was sensitive to nine types of antibiotics, which would lay a good foundation for the choice of selective marker in genetic engineering modification of this strain. The results in this article would lay a good foundation for the bioremediation of heavy metals pollution in the future. Pseudomonas sp. Cr13 can tolerate high concentration of Cr6+ and partially remove Cr6+, which make Cr13 an attractive option for the bioremediation of heavy metal chromium (Cr). Our findings suggest that Pseudomonas sp. Cr13 is a potential bacterium with the ability of bioremediation of heavy metal Cr.


Subject(s)
Chromium , Metals, Heavy , Biodegradation, Environmental , Metals, Heavy/analysis , Pseudomonas/genetics
3.
Int J Syst Evol Microbiol ; 70(7): 4384-4389, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32589565

ABSTRACT

A Gram-stain-negative, stalked, oval-shaped and budding bacterial strain, designated E7T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The novel strain was strictly aerobic, and catalase- and oxidase-positive. It grew at 6-40 °C (optimum 30 °C) and pH 5.5-8.0 (optimum pH 7.0-7.5). The strain required 0.5-9.0 % (w/v) NaCl (optimum 3.0-5.0 %) for growth. Aesculin, starch, pectin and Tween 20 were hydrolysed. Based on 16S rRNA gene sequence analysis, strain E7T showed the highest similarity with Gimesia maris DSM 8797T (97.5 %). The average nucleotide identity and in silico DNA-DNA hybridization values between strain E7T and G. maris DSM 8797T were 78.0 and 19.3 %, respectively. The predominant cellular fatty acids of strain E7T were C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major respiratory quinone was menaquinone-6 (MK-6) and the major polar lipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME), phosphatidyldimethylethanolamine (PDME), phosphatidylcholine (PC) and diphosphatidylglycerol (DPG). The genomic DNA G+C content of strain E7T was 52.8 mol%. On the basis of phylogenetic inference and phenotypic characteristics, it is proposed that strain E7T represents a novel species of the genus Gimesia, for which the name Gimesia benthica sp. nov. is proposed. The type strain is E7T (=CGMCC 1.16119T=KCTC 72737T).


Subject(s)
Phylogeny , Planctomycetales/classification , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Indian Ocean , Nucleic Acid Hybridization , Phospholipids/chemistry , Planctomycetales/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
4.
Int J Syst Evol Microbiol ; 70(8): 4523-4530, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32589573

ABSTRACT

A novel Gram-stain-negative, aerobic, motile by peritrichous flagella, oval to rod-shaped bacterium, designated strain 2CG4T, was isolated from a deep-sea water sample collected from the Northwest Indian Ocean. The results of phylogenetic analysis of both 16S rRNA gene and RpoC protein sequences indicated that this strain was affiliated with the genus Halovulum in the Amaricoccus clade of the family Rhodobacteraceae of the class Alphaproteobacteria, sharing 95.3 % similarity at the 16S rRNA gene sequence level with the type strain of Halovulum dunhuangense YYQ-30T, the only species in the genus Halovulum. The predominant fatty acids (>10 %) of 2CG4T were summed feature 8 (C18 : 1ω7c and/ or C18 : 1ω6c; 61.1 %) and cyclo-C19 : 0ω8c (15.6 %). The polar lipids of 2CG4T were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sulfoquinovosyldiacylglycerol. The only isoprenoid quinone of 2CG4T was ubiquinone-10. The DNA G+C content of 2CG4T was determined to be 69.4 %. The central gene pufLM for the photosynthetic reaction was not detected. No growth occurred for 2CG4T in the absence of NaCl. On the basis of these data, it is concluded that the 2CG4T represents a novel species of the genus Halovulum, for which the name Halovulum marinum sp. nov. is proposed. The type strain is 2CG4T (=CGMCC 1.16468T=JCM 32611T).


Subject(s)
Phylogeny , Rhodobacteraceae/classification , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Indian Ocean , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
5.
Int J Syst Evol Microbiol ; 68(12): 3760-3765, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30516459

ABSTRACT

A novel aerobic, Gram-stain-negative bacterium, designated strain 2ED5T, was isolated from a deep seawater sample in the north-west Indian Ocean. Cells of the strain were oval- to rod-shaped, and motile by a polar flagellum or sessile by a prostheca. The strain formed creamy white colonies on 2216E marine agar plates. It grew at 10-40 °C (optimum 28 °C) and pH 5.0-8.0 (optimum pH 6.0-7.0). The strain required 1-6 % (w/v) NaCl for growth and grew optimally in the presence of 2-3 % NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain 2ED5T was affiliated with the genus Hyphobacterium in the family Hyphomonadaceae of the class Alphaproteobacteria, sharing 95.1 % similarity at the 16S rRNA gene sequence level with the type strain of Hyphobacterium vulgare, the only species in the genus Hyphobacterium. The major fatty acids of the strain were C18 : 1ω7c and iso-C17 : 1ω9c, and the polar lipids included monoglycosyl diglyceride, sulfoquinovosyl diacylglycerol, glucuronopyranosyl diglyceride, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unidentified glycolipid. The strain contained ubiquinone Q-10 as the predominant respiratory quinone. The G+C content of the genomic DNA of the strain was 60.9 mol%. Based on the results of this polyphasic analysis, strain 2ED5T represents a novel species in the genus Hyphobacterium, for which the name Hyphobacterium indicum sp. nov. is proposed. The type strain is 2ED5T (=CGMCC 1.16466T=JCM 32612T).


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Indian Ocean , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
6.
Genome Announc ; 4(4)2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27445373

ABSTRACT

The draft genome sequences of Klebsiella variicola strain KV321, which was isolated from rhizosphere soil of Pisolithus tinctorius-Eucalyptus mycorrhiza, are reported here. The genome sequences contain genes involved in ABC transporter function in multiple-antibiotic drug resistance and colonization. This genomic analysis will help understand the genomic basis of K. variicola virulence genes and how the genes play a part in its interaction with other living organisms.

7.
Luminescence ; 30(6): 847-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25582819

ABSTRACT

In H2 SO4 solution, As(III) was reduced to arsine (AsH3 ) by NaBH4 , and was absorbed in HAuCl4 solution to form nanogold particles (NGs) that exhibited a resonance Rayleigh scattering (RRS) effect at 370 nm. Under the selected conditions, when the As(III) concentration increased the RRS peak also increased due to the formation of more NGs. There was a linear correlation between RRS intensity and As(III) concentration in the range 6-1000 ng/mL, with a detection limit of 3 ng/mL. This new hydride generation-nanogold reaction RRS (HG-NG RRS) method was applied to determine trace amounts of As in milk samples, with satisfactory results.


Subject(s)
Arsenic/analysis , Metal Nanoparticles/chemistry , Animals , Borohydrides/chemistry , Food Analysis/methods , Gold , Limit of Detection , Microscopy, Electron, Scanning , Milk/chemistry , Scattering, Radiation
8.
Luminescence ; 30(6): 790-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25428635

ABSTRACT

Nanogold particles (NG) were modified by anti-rabbit antibody (RAb) against human chorionic gonadotropin to obtain an immunonanogold probe (ING). In pH 7.0 Na2HPO4-citrate buffer solution containing KCl, ING probes formed large aggregates in which Victoria blue B (VBB) molecules were adsorbed on the surface and which exhibited strong surface-enhanced Raman scattering (SERS) at a peak of 1612 cm(-1). After addition of human chorionic gonadotropin (hCG) an immune reaction with the ING probe occurred to form dispersive ING-hCG complexes with non-SERS activity that led to a decreased SERS peak at 1612 cm(-1). The decreased SERS intensity was linear to the concentration of hCG over 2.4-73.2 ng/mL. The ING reaction was studied in detail by SERS, scanning electron microscope (SEM), resonance Rayleigh scattering (RRS), surface plasmon resonance (SPR) absorption and laser scattering techniques. SERS quenching was observed and discussed.


Subject(s)
Chorionic Gonadotropin/analysis , Immunohistochemistry/methods , Rosaniline Dyes/chemistry , Spectrum Analysis, Raman/methods , Chorionic Gonadotropin/urine , Coloring Agents/chemistry , Humans , Microscopy, Electron, Scanning , Surface Plasmon Resonance
9.
FEMS Microbiol Lett ; 282(1): 89-99, 2008 May.
Article in English | MEDLINE | ID: mdl-18336549

ABSTRACT

A gene cluster ORFabcd from a Sinorhizobium fredii HN01 mutant strain HSMRalpha was isolated. We showed that it was an operon involved in sulfur metabolism. Functional studies revealed that, except for ORFb, the three genes ORFa, ORFc and ORFd were involved in sulfite reduction. ORFa and ORFc were similar to the cysG and cysI from Sinorhizobium meliloti 1021 and Rhizobium etli CFN 42, respectively. ORFd encodes a conserved hypothetical protein in other bacteria. We demonstrate here, for the first time, that it was a new locus involved in sulfate assimilation in S. fredii HN01 and we designated it as cysII.


Subject(s)
Operon , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxidoreductases Acting on Sulfur Group Donors/genetics , Sinorhizobium fredii/genetics , Sulfates/metabolism , Sulfites/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Cloning, Molecular , Genes, Reporter , Molecular Sequence Data , Open Reading Frames , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Promoter Regions, Genetic , Sequence Analysis, DNA , Sequence Deletion , Sinorhizobium fredii/growth & development , Sinorhizobium fredii/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...