Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.254
Filter
1.
Biomaterials ; 313: 122769, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39208698

ABSTRACT

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Subject(s)
Coated Materials, Biocompatible , Extracellular Matrix , Wound Healing , Animals , Extracellular Matrix/metabolism , Dogs , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Wound Healing/drug effects , Collagen Type I/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Human Umbilical Vein Endothelial Cells , Re-Epithelialization/drug effects , Cell Adhesion/drug effects
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124934, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39216369

ABSTRACT

Two coordination polymers (CPs), [Zn5(L)2(phen)5](1) and [Cd2(HL)(2,2-bpy)(H2O)3](2), were synthesized by using 2',3,3',5,5'-Diphenyl ether pentacarboxylic acid (H5L), phenanthroline (phen), and 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions. The L5- ligand adopts the µ6-к2: к2: к1: к1: к1: к1 mode in 1 and the µ5-к2: к2: к2: к2: к1 mode in 2. Sensing experiments show that 1 and 2 are fluorescence probes with high sensitivity and rapid detection of nitro explosives, antibiotics, and pesticides. In order to verify the ability of 2 to detect FLU in actual samples, we performed a spiked recovery experiment in green pepper water. The spiked recoveries were 97.77-101.18 %. Interestingly, because H5L is not completely deprotonated in 2, there is abundant hydrogen bonding, which makes the fluorescence quenching rate higher and the detection limit lower. The possible fluorescence quenching mechanism of 1 and 2 can be explained by their UV-VIS absorption spectra and orbital energy levels.

3.
Talanta ; 281: 126884, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39288588

ABSTRACT

Hexavalent chromium (Cr(VI)) is an environmental pollutant and recognized as a human carcinogen. Therefore, it is necessary to develop a simple and sensitive detection technique for Cr(VI). Herein, it is found that Cu2+ interacts with guanosine 5'-monophosphate (GMP) to form a homogeneous Cu(II)-GMP complex (Cu2+·GMP) that efficiently displays the oxidoreductase-like catalytic activity. Cu2+·GMP can catalyze the oxidation between Cr(VI) and substrate 3,3',5,5'- tetramethylbenzidine (TMB), resulting in color change recognized by the naked eyes. Base on this, a convenient colorimetric assay for Cr(VI) detection was developed. The detection limit (3σ/s) of this sensor for Cr(VI) was 23 nM with a linear range of 0.1-25 µM. Moreover, the proposed assay was successfully applied to detect Cr(VI) in different environmental water samples with satisfactory recoveries. Our method is simple, efficient, rapid and cost-effective for Cr(VI) detection without the need for complicated material preparation or special separation, which shows great potential in environmental monitoring.

4.
J Bone Miner Res ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303095

ABSTRACT

Recent advancements in deep learning (DL) have revolutionized the capability of artificial intelligence (AI) by enabling the analysis of large-scale, complex datasets that are difficult for humans to interpret. However, large amounts of high-quality data are required to train such generative AI models successfully. With the rapid commercialization of single-cell sequencing and spatial transcriptomics platforms, the field is increasingly producing large-scale datasets such as histological images, single-cell molecular data, and spatial transcriptomic data. These molecular and morphological datasets parallel the multimodal text and image data used to train highly successful generative AI models for natural language processing and computer vision. Thus, these emerging data types offer great potential to train generative AI models that uncover intricate biological processes of bone cells at a cellular level. In this Perspective, we summarize the progress and prospects of generative AI applied to these datasets and their potential applications to bone research. In particular, we highlight three AI applications: predicting cell differentiation dynamics, linking molecular and morphological features, and predicting cellular responses to perturbations. To make generative AI models beneficial for bone research, important issues, such as technical biases in bone single-cell datasets, lack of profiling of important bone cell types, and lack of spatial information, need to be addressed. Realizing the potential of generative AI for bone biology will also likely require generating large-scale, high-quality cellular-resolution spatial transcriptomics datasets, improving the sensitivity of current spatial transcriptomics datasets, and thorough experimental validation of model predictions.


Imagine if pathologists could infer the whole transcriptomes of individual cells from a standard histological section of a bone biopsy, identify molecular defects compared to healthy cells, and predict how those cells would respond to various chemical or genetic treatments. The ability to model the relationship between transcriptomic profiles and morphological or functional properties based on limited biopsy samples would revolutionize diagnosis and treatment decisions in clinical practice. Such modeling seemed impossible only a few years ago, and comprehensive molecular diagnosis is currently impractical, as it requires extensive and expensive laboratory tests. However, rapid advances in artificial intelligence (AI) may soon make this dream a reality. In this Perspective, we discuss the promise of generative AI for linking transcriptomes and morphology at cellular resolution to benefit bone research and potential clinical application. We argue that there is a plausible path toward AI-assisted diagnosis using the whole transcriptome in a cellular and spatial context, which will lead to breakthroughs in our understanding of bone biology and bone disease.

5.
J Nutr Health Aging ; 28(11): 100365, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307073

ABSTRACT

OBJECTIVES: Intrinsic capacity (IC), a multidimensional construct encompassing mental and physical capacities, has been established in the aging framework by the World Health Organization. However, the detailed relationship between IC and Chinese sleep patterns (nighttime sleep and post-lunch naps) remains inadequately elucidated. METHODS: Participants in this study were individuals aged ≥45 years residing in China, included in the China Health and Retirement Longitudinal Study (CHARLS). We analyzed 4 years of CHARLS data from the first wave (May 2011-March 2012) to the second wave (July 2015-January 2016). Data from these waves were utilized for longitudinal analysis. Self-reported data included nighttime sleep and nap duration, along with other baseline characteristics. The IC evaluation involved physical examinations and blood tests. Initially, linear regression was used to assess the relationship between total sleep duration, nighttime sleep duration, nap duration, and IC change between the two waves that were determined by marginal effects (ME) and their corresponding 95% confidence intervals (CIs). Regression splines were employed to explore potential nonlinear associations. Subgroup and sensitivity analyses were conducted to investigate the heterogeneity of IC change under specific conditions and the robustness of our results. Mediation analysis was performed to identify potential factors mediating the relationship between sleep patterns and IC change. RESULTS: Both excessive (>10 h) (total, ME: -1.12; 95% CI: -1.61, -0.64; nighttime, ME: -1.44; 95% CI: -2.29, -0.59) and insufficient (<6 h) sleep duration (total, ME: -0.43; 95% CI: -0.68, -0.18; nighttime, ME: -0.50; 95% CI: -0.73, -0.27) negatively impacted IC change. Moderate naps (≤60 min) mitigated the decline in IC change (ME: 0.28; 95% CI: 0.07, 0.49). IC values decreased at the slowest rate when nap time constituted one-seventh of total sleep time. The onset of dyslipidemia partially mediated the association between naps (≤60 min) and IC change (P = 0.02). CONCLUSIONS: These findings suggest that maintaining a healthy sleep pattern of 6-8 h of nighttime or total sleep, along with a post-lunch nap of ≤60 min, helps preserve optimal IC or delay its decline. This is particularly beneficial for cognitive, psychological, and locomotion performance among middle-aged and older adults.

6.
Biomed Pharmacother ; 179: 117338, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39278187

ABSTRACT

A recent study has introduced a recombinant fusion protein, consisting of the extracellular domain (ECD) of p75 and the Fc fragment of human immunoglobulin IgG1 (p75ECD-Fc), as a multifaceted agent within the nervous system. This research aimed to assess the effects of p75ECD-Fc on neuronal growth and the restoration of neurological functions in rats afflicted with neonatal hypoxic-ischemic encephalopathy (NHIE). In vitro analyses revealed that 1 µM p75ECD-Fc treatment markedly increased cell viability and facilitated neurite outgrowth in neurons exposed to oxygen-glucose deprivation (OGD). Subsequent in vivo studies determined that a dose of 78.6 µg/3 µl of p75ECD-Fc significantly mitigated brain damage and both acute and long-term neurological impairments, outperforming the therapeutic efficacy of hypothermia, as evidenced through behavioral assessments. Additionally, in vivo immunostaining showed that p75ECD-Fc administration enhanced neuronal survival and regeneration, and reduced astrocytosis and microglia activation in the cortex and hippocampus of NHIE rats. A noteworthy shift from A1 to A2 astrocyte phenotypes and from M1 to M2 microglia phenotypes was observed after p75ECD-Fc treatment. Furthermore, a co-expression of the p75 neurotrophin receptor (p75NTR) and Nestin was identified, with an overexpression of Nestin alleviating the neurological dysfunction induced by NHIE. Mechanistically, the neuroprotective effects of p75ECD-Fc, particularly its inhibition of neuronal apoptosis post-OGD, may be attributed to Nestin. Taken together, these results highlight the neuroprotective and anti-inflammatory effects of p75ECD-Fc treatment through the modulation of glial cell phenotypes and the Nestin-mediated inhibition of neuronal apoptosis, positioning it as a viable therapeutic approach for NHIE.


Subject(s)
Animals, Newborn , Apoptosis , Hypoxia-Ischemia, Brain , Immunoglobulin Fc Fragments , Nestin , Rats, Sprague-Dawley , Animals , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Apoptosis/drug effects , Nestin/metabolism , Immunoglobulin Fc Fragments/pharmacology , Rats , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Recombinant Fusion Proteins/pharmacology , Male , Cell Survival/drug effects , Microglia/drug effects , Microglia/pathology , Microglia/metabolism , Humans , Receptors, Nerve Growth Factor/metabolism , Disease Models, Animal
7.
Front Immunol ; 15: 1431207, 2024.
Article in English | MEDLINE | ID: mdl-39308873

ABSTRACT

The Mycobacterium tuberculosis variant bovis (M. bovis) is a highly pathogenic environmental microorganism that causes bovine tuberculosis (bTB), a significant zoonotic disease. Currently, "test and culling" is the primary measure for controlling bTB, but it has been proven to be inadequate in animals due to their high susceptibility to the pathogen. Selective breeding for increased host resistance to bTB to reduce its prevalence is feasible. In this study, we found a vital host-dependent factor, RBMX2, that can potentially promote M. bovis infection. By knocking RBMX2 out, we investigated its function during M. bovis infection. Through transcriptome sequencing and alternative splicing transcriptome sequencing, we concluded that after M. bovis infection, embryo bovine lung (EBL) cells were significantly enriched in RNA splicing associated with apoptosis compared with wild-type EBL cells. Through protein/molecular docking, molecular dynamics simulations, and real-time quantitative PCR, we demonstrated that RBMX2 promotes the apoptosis of epithelial cells by upregulating and binding to apoptotic peptidase activating factor 1 (APAF-1), resulting in the alternative splicing of APAF-1 as a retention intron. To our knowledge, this is the first report of M. bovis affecting host epithelial cell apoptosis by hijacking RBMX2 to promote the intron splicing of downstream APAF-1. These findings may represent a significant contribution to the development of novel TB prevention and control strategies.


Subject(s)
Apoptosis , Apoptotic Protease-Activating Factor 1 , Epithelial Cells , Introns , Mycobacterium bovis , Tuberculosis, Bovine , Animals , Apoptotic Protease-Activating Factor 1/genetics , Apoptotic Protease-Activating Factor 1/metabolism , Apoptosis/genetics , Mycobacterium bovis/physiology , Cattle , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/genetics , Introns/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , Down-Regulation , Host-Pathogen Interactions/genetics
8.
Arch Dermatol Res ; 316(8): 614, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266881

ABSTRACT

Xanthelasma palpebrarum is one of the most common cutaneous xanthomas in humans. Currently, there are various methods available for treating xanthelasma palpebrarum, but the high treatment frequency and recurrence rate remain significant challenges for patients. Therefore, it is necessary to establish a reasonable and effective clinical grading system to guide the diagnosis and treatment of xanthelasma palpebrarum. We developed a clinical scoring system related to local injection of pingyangmycin for the treatment of xanthelasma palpebrarum, which can be used to predict early prognosis and treatment outcomes in patients. We collected and retrospectively studied 246 outpatient cases of xanthelasma palpebrarum treated with local injection of pingyangmycin in the Department of Plastic Surgery at Shanghai East Hospital from February 2020 to August 2022. Potential independent risk factors for adverse outcomes (recurrence or non-recurrence) were considered in univariate and multivariate logistic regression models. Predictive factors were determined based on the multivariate logistic regression model and Cox model, and a scoring grading system was established. External validation was conducted on an independent cohort of 110 patients. Based on logistic regression analysis, the number, area, and color of lesions were identified as significant predictive indicators (P < 0.05), with respective AUCs of 0.710, 0.799, and 0.755. The Cox model established hazard ratios for four new severity indicators of xanthelasma palpebrarum: hyperlipidemia, number of lesions, lesion area, and lesion grayscale value. Based on these findings, a new clinical grading model was developed, which was validated to be effective in the external cohort. The new scoring-based clinical predictive model can effectively predict the number of pingyangmycin injection treatments and prognosis in patients with xanthelasma palpebrarum. It holds promise for broader application in clinical practice.


Subject(s)
Eyelid Diseases , Xanthomatosis , Humans , Xanthomatosis/diagnosis , Xanthomatosis/pathology , Female , Male , Middle Aged , Retrospective Studies , Adult , Prognosis , Eyelid Diseases/diagnosis , Eyelid Diseases/drug therapy , Bleomycin/administration & dosage , Treatment Outcome , Aged , Recurrence , China/epidemiology , Severity of Illness Index , Young Adult , Risk Factors , Eyelids/pathology
9.
Commun Biol ; 7(1): 1172, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294333

ABSTRACT

Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure. Overall, E. japonicus peptides showed better results than G. max peptides in treating CDI. This study supports the potential treatment of CDI with natural peptides and promotes the development of specialty foods for CDI enteritis. Clostridioides difficile infection (CDI) is a common healthcare-associated infection and the leading cause of gastroenteritis-related deaths worldwide. To investigate the effects of peptide composition of different protein products on CDI, we analyzed and compared the peptide sequences and compositions from Engraulis japonicus and Glycine max using Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). An animal model of CDI was also established to investigate the potential therapeutic effects of these peptides in vivo. The peptide compositions of E. japonicus and G. max differed, with only 11% of the peptide sequences being identical. Oral administration of the tested peptides could reduce intestinal inflammation, repair the intestinal barrier, increase the proportion of beneficial bacteria, and reduce the proportion of harmful bacteria, providing a therapeutic effect against CDI. However, the peptides may differ considerably in some aspects. E. japonicus peptides were superior to G. max peptides in promoting colon epithelial cell proliferation and repairing tight intestinal cell junctions. Interestingly, the two sources of peptides have different effects on the cecal microbiome. E. japonicus peptides can effectively restore the diversity and richness of intestinal microbiota, while G. max peptides have poor regulatory effects on the intestinal microbiota structure.


Subject(s)
Clostridioides difficile , Clostridium Infections , Disease Models, Animal , Gastrointestinal Microbiome , Peptides , Animals , Mice , Peptides/pharmacology , Peptides/chemistry , Clostridium Infections/microbiology , Clostridium Infections/drug therapy , Clostridioides difficile/drug effects , Gastrointestinal Microbiome/drug effects , Tandem Mass Spectrometry , Male
10.
Genetics ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259277

ABSTRACT

Germ cell development and gamete production in animals require small RNA pathways. While studies indicate that microRNAs (miRNAs) are necessary for normal sperm production and function, the specific roles for individual miRNAs are largely unknown. Here, we use small RNA sequencing of dissected gonads and functional analysis of new loss of function alleles to identify functions for miRNAs in the control of fecundity and sperm production in Caenorhabditis elegans (C. elegans) males and hermaphrodites. We describe a set of 29 male gonad-enriched miRNAs and identify a set of individual miRNAs (mir-58.1 and mir-235) and a miRNA cluster (mir-4807-4810.1) that are required for optimal sperm production at 20°C and a set of miRNAs (mir-49, mir-57, mir-83, mir-261, and mir-357/358) that are required for sperm production at 25°C. We observed defects in meiotic progression in mutants missing mir-58.1, mir-83, mir-235, and mir-4807-4810.1, which may contribute to the observed defects in sperm production. Further, analysis of multiple mutants of these miRNAs suggested genetic interactions between these miRNAs. This study provides insights on the regulatory roles of miRNAs that promote optimal sperm production and fecundity in males and hermaphrodites.

11.
Appl Microbiol Biotechnol ; 108(1): 473, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320549

ABSTRACT

Prenylated indole alkaloids, which are mainly produced by genera Aspergillus and Penicillium, are a class of structurally intriguing specialized metabolites with remarkable biomedical interests. In this study, chemically guided isolation of the Nicotiana tabacum-derived endophytic fungus Aspergillus japonicus TE-739D yielded eight structurally diverse prenylated indole alkaloids, including an undescribed compound, namely aspertaichamide B (ATB, 1), together with seven previously discovered derivatives (compounds 2 - 8). Their chemical structures as well as the stereochemical features were determined by integrated spectroscopic analyses, including HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and a comparison of the experimental ECD data with computed DFT-based quantum chemical calculations. In vitro cytotoxic effects against the gastric cancer MFC cells revealed that the new compound ATB demonstrated considerable activity. Further studies found that ATB suppressed the viability, colony formation, and migration ability of MFC cells, and induced MFC cells apoptosis in a concentration-dependent way. Moreover, ATB stimulated ROS production in MFC cells and inhibited the tumor growth in the MFC-sourced subcutaneous tumor model while not significantly reducing the weight of mice. The pharmacological results suggested that the newly discovered ATB may be a promising anti-tumor lead compound. KEY POINTS: • Eight structurally diverse prenylated indole alkaloids including a new aspertaichamide B (ATB) were isolated from the fungus Aspergillus japonicus TE-739D. • The structure of ATB was elucidated by HRESIMS, NMR, NMR calculations with DP4 + probability analysis, and ECD calculations. • ATB inhibited cell proliferation, promoted apoptosis, and increased ROS production in gastric cancer cells, and exhibited inhibitory effects on tumor growth in vivo.


Subject(s)
Antineoplastic Agents , Aspergillus , Indole Alkaloids , Prenylation , Aspergillus/chemistry , Animals , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Indole Alkaloids/isolation & purification , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Mice , Apoptosis/drug effects , Humans , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects
12.
Immunol Res ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320694

ABSTRACT

Vitiligo is a chronic dermatological condition marked by the loss of skin pigmentation. Its complex etiology involves multiple factors and has not been completely elucidated. Protein post-translational modification pathways have been proven to play a significant role in inflammatory skin diseases, yet research in the context of vitiligo remains limited. This review focuses on the role of post-translational modifications in vitiligo pathogenesis, especially their impact on cellular signaling pathways related to immune response and melanocyte survival. Current therapeutic strategies targeting these pathways are discussed, emphasizing the potential for novel treatments in vitiligo management.

13.
Nat Immunol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261722

ABSTRACT

Evolutionary pressures sculpt population genetics, whereas immune adaptation fortifies humans against life-threatening organisms. How the evolution of selective genetic variation in adaptive immune receptors orchestrates the adaptation of human populations to contextual perturbations remains elusive. Here, we show that the G396R coding variant within the human immunoglobulin G1 (IgG1) heavy chain presents a concentrated prevalence in Southeast Asian populations. We uncovered a 190-kb genomic linkage disequilibrium block peaked in close proximity to this variant, suggestive of potential Darwinian selection. This variant confers heightened immune resilience against various pathogens and viper toxins in mice. Mechanistic studies involving severe acute respiratory syndrome coronavirus 2 infection and vaccinated individuals reveal that this variant enhances pathogen-specific IgG1+ memory B cell activation and antibody production. This G396R variant may have arisen on a Neanderthal haplotype background. These findings underscore the importance of an IGHG1 variant in reinforcing IgG1 antibody responses against life-threatening organisms, unraveling the intricate interplay between human evolution and immune adaptation.

14.
Plant Divers ; 46(4): 448-461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39280966

ABSTRACT

Cymbidium (Orchidaceae: Epidendroideae), with around 60 species, is widely-distributed across Southeast Asia, providing a nice system for studying the processes that underlie patterns of biodiversity in the region. However, phylogenetic relationships of Cymbidium have not been well resolved, hampering investigations of species diversification and the biogeographical history of this genus. In this study, we construct a plastome phylogeny of 56 Cymbidium species, with four well-resolved major clades, which provides a framework for biogeographical and diversification rate analyses. Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern Indo-Burma to the eastern Himalayas during the early Miocene (∼21.10 Ma). It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene. Cymbidium spp. migration to the adjacent regions (Borneo, Philippines, and Sulawesi) primarily occurred during the Pliocene-Pleistocene period. Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin, and is positively associated with changes in temperature and monsoon intensity. Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification, after which the net diversification rate was reduced with the cooling climate after the middle Miocene. The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches, yet without a significant effect on diversification rates. This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.

15.
Kaohsiung J Med Sci ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287046

ABSTRACT

This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1ß, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.

16.
Ecotoxicol Environ Saf ; 285: 117085, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321529

ABSTRACT

Copper, a vital mineral nutrient, possesses redox qualities that make it both beneficial and toxic to organisms. Excessive environmental copper exposure can result in neurological damage and cognitive decline in humans. Astrocytes, the predominant glial cells in the brain, are particularly vulnerable to pollutants, but the mechanism of copper-induced damage to astrocytes remains elusive. The aim of this study was to determine the role of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in initiating NLRP3 inflammasome-induced astrocyte pyroptosis and chronic inflammation under conditions of copper overload. Our findings indicated that copper exposure elevated mitochondrial ROS (mtROS) levels, resulting in mitochondrial damage in astrocytes. This damage caused the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activated the cGAS-STING pathway. This activation resulted in interactions between STING and NLRP3 proteins, facilitating the assembly of the NLRP3 inflammasome and inducing pyroptosis. Furthermore, depletion of mtROS mitigated copper-induced mitochondrial damage in astrocytes and reduced mtDNA leakage. Pharmacological inhibition of STING or STING transfection further reversed copper-induced pyroptosis and the inflammatory response. In conclusion, this study demonstrated that the leakage of mtDNA into the cytoplasm and the subsequent activation of the cGAS-STING-NLRP3 pathway may be potential mechanisms underlying copper-induced pyroptosis in astrocytes. These findings provided new insights into the toxicity of copper.

17.
J Clin Ultrasound ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235299

ABSTRACT

PURPOSE: This study aims to assess the diagnostic efficacy of Korean Thyroid imaging reporting and data system (K-TIRADS), S-Detect software and contrast-enhanced ultrasound (CEUS) when employed individually, as well as their combined application, for the evaluation of thyroid nodules, with the objective of identifying the optimal method for diagnosing thyroid nodules. METHODS: Two hundred and sixty eight cases pathologically proven of thyroid nodules were retrospectively enrolled. Each nodule was classified according to K-TIRADS. S-Detect software was utilized for intelligent analysis. CEUS was employed to acquire contrast-enhanced features. RESULTS: The area under curve (AUC) values for diagnosing benign and malignant thyroid nodules using K-TIRADS alone, S-Detect software alone, CEUS alone, the combined application of K-TIRADS and CEUS, the combined application of S-Detect software and CEUS were 0.668, 0.668, 0.719, 0.741, and 0.759, respectively (p < 0.001). The sensitivity rate of S-Detect software was 89.9% (p < 0.001). It was the highest of the five diagnostic methods above. CONCLUSION: The utilization of S-Detect software can be served as a powerful tool for early screening. Notably, the combined utilization of S-Detect software with CEUS demonstrates superior diagnostic performance compared to employing K-TIRADS, S-Detect software, CEUS used individually, as well as the combined application of K-TIRADS with CEUS.

18.
Oncol Rep ; 52(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39219256

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 2D, the cell migration and invasion assay data in Fig. 3C, the mouse imaging pictures in Fig. 4C and D, and the H&E­stained images in Fig. 4E and F were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been submitted or published elsewhere prior to the submission of this paper to Oncology Reports. Given that the abovementioned data had already apparently been submitted or published prior to the receipt of this paper at Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 706­716, 2021; DOI: 10.3892/or.2020.7880].

19.
Transl Pediatr ; 13(8): 1359-1367, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39263290

ABSTRACT

Background: Resting energy expenditure (REE) refers to the energy consumption of the body in a resting state without skeletal muscle activity. This study aimed to examine the REE among children hospitalized with varying nutritional status. Methods: This was a retrospective study. We enrolled 109 pediatric cases that underwent indirect calorimetry (IC) and divided into four groups: mild malnutrition group (15 cases), moderate malnutrition group (30 cases), severe malnutrition group (32 cases), and obesity group (32 cases). We compared and analyzed the measured REE (mREE) using IC with the predicted REE (pREE) using five energy equations. The paired t-test was used to compare the results of two samples. Pearson analysis was used to assess the correlation between two values. The agreement analysis was performed using the Bland-Altman method. Results: There was no significant difference in mREE between the mild, moderate, and severe malnutrition groups, but each differed significantly from the obesity group. All populations exhibited significant correlation between the mREEs and all five energy equations, and the equation with the highest predictive accuracy was the Schofield equation, which achieved an accuracy of 47.7%. In subgroup analysis, there was no significant difference between mREE and pREE for each of the five equations in the mild, moderate malnutrition groups. Only the prediction result of the Liu equation was not significantly different from the mREE in the severe malnutrition group. The prediction accuracy of the Liu equation was relatively the highest (34.4%). However, in the obese group, there were significant differences in pREE and mREE between the Liu equation and Mifflin equation. Under different nutritional statuses, the results of the Bland-Altman analysis suggested that deviation values between REEs predicted by each equation and mREE were greater than ±10%. Conclusions: There were differences in REE among children with different nutritional status. The results obtained from the five predictive energy equations deviated from the IC results. When REE cannot be measured by IC, it is essential to choose an appropriate predictive energy equation based on the nutritional status of the individual.

20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 560-564, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223020

ABSTRACT

Spine surgery may lead to moderate to severe pain.Poorly controlled postoperative pain seriously affects the prognosis and recovery of patients.The erector spinae plane block (ESPB),firstly proposed in 2016 as a novel interfascial plane block,has been widely used in the management of intraoperative and postoperative pain in spine surgery.It has been confirmed as a safe,simple,and effective block.This review describes the anatomic basis,mechanism,and methods of ESPB,summarizes the clinical application of ESPB in spine surgery,and makes an outlook on the potential role of ESPB as a part in the multimodal management of postoperative pain in spine surgery.


Subject(s)
Nerve Block , Pain, Postoperative , Paraspinal Muscles , Spine , Humans , Nerve Block/methods , Pain, Postoperative/prevention & control , Pain, Postoperative/therapy , Spine/surgery , Paraspinal Muscles/innervation
SELECTION OF CITATIONS
SEARCH DETAIL