Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.057
Filter
1.
Atherosclerosis ; 395: 117575, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38851155

ABSTRACT

BACKGROUND AND AIMS: Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS: We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS: We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS: Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.

2.
Heliyon ; 10(11): e31784, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845993

ABSTRACT

Background: This study investigated the effects of purple sweet potato anthocyanins (PSPA) in a type 2 diabetes mellitus (T2DM) mouse model. Methods: Sixty-five male mice were randomly divided into one control group and four experimental groups, which were fed with a high-fat diet and intraperitoneally injected with streptozotocin (STZ) to induce T2DM. The model mice were treated with 0 (M), 227.5 (LP), 455 (MP), or 910 (HP) mg/kg PSPA for ten days. ELISA, 16S rRNA sequencing, and hematoxylin and eosin staining were used to assess blood biochemical parameters, gut microbial composition, and liver tissue structure, respectively. Results: The FBG concentration was significantly decreased in the LP (6.32 ± 1.05 mmol/L), MP (6.32 ± 1.05 mmol/L), and HP (5.65 ± 0.83 mmol/L) groups; the glycosylated hemoglobin levels were significantly decreased in the HP group (14.43 ± 7.12 pg/mL) compared with that in the M group (8.08 ± 1.04 mmol/L; 27.20 ± 7.72 pg/mL; P < 0.05). The PSPA treated groups also increased blood glutathione levels compared with M. PSPA significantly affected gut microbial diversity. The Firmicutes/Bacteroidetes ratio decreased by 38.9 %, 49.2 %, and 15.9 % in the LP, MP, and HP groups compared with that in the M group (0.62). The PSPAs treated groups showed an increased relative abundance of Lachnospiraceae_Clostridium, Butyricimonas, and Akkermansia and decreased abundance of nine bacterial genera, including Staphylococcus. Conclusion: PSPA reduced blood glucose levels, increased serum antioxidant enzymes, and optimized the diversity and structure of the gut microbiota in mice with T2DM.

3.
Adv Mater ; : e2403743, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862115

ABSTRACT

Semiconducting carbon nanotubes (CNTs) have been considered as the most promising channel material to construct ultra-scaled field-effect transistors (FETs), but the perfect sp2 C-C structure makes stable doping difficult, which limits the electrical designability of CNT devices. Here, an inner doping method was developed by filling CNTs with one-dimensional (1D) halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor (CNT-FET) for constructing complementary metal-oxide-semiconductor (CMOS) electronics. Most importantly, a quasi-broken gap (BG) heterojunction tunnel field-effect transistor (TFET) was first demonstrated based on an individual partial-filling CsPbBr3/CNT and exhibited a subthreshold swing of 35 mV dec-1 with a high on-state current of up to 4.9 µA/tube and an on/off current ratio of up to 105 at room temperature. The quasi-BG TFET based on the CsPbBr3/CNT coaxial heterojunction paves the way for constructing high-performance and ultralow power consumption ICs. This article is protected by copyright. All rights reserved.

4.
Ann Biomed Eng ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880816

ABSTRACT

Porous nickel-titanium (NiTi) manufactured using metal injection molding (MIM) has emerged as an innovative generation of drug-loaded stent materials. However, an increase in NiTi porosity may compromise its mechanical properties and cytocompatibility. This study aims to explore the potential of porous NiTi as a vascular drug delivery material and evaluate the impact of porosity on its drug loading and release, mechanical properties, and cytocompatibility. MIM, combined with the powder space-holder method, was used to fabricate porous NiTi alloys with three porosity levels. The mechanical properties of porous NiTi were assessed, as well as the surface cell growth capability. Furthermore, by loading rapamycin nanoparticles onto the surface and within the pores of porous NiTi, we evaluated the in vitro drug release behavior, inhibitory effect on cell proliferation, and inhibition of neointimal hyperplasia in vivo. The results demonstrated that an increase in porosity led to a decrease in the mechanical properties of porous NiTi, including hardness, tensile strength, and elastic modulus, and a decrease in the surface cell growth capability, affecting both cell proliferation and morphology. Concurrently, the loading capacity and release duration of rapamycin were extended with increasing porosity, resulting in enhanced inhibitory effects on cell proliferation in vitro and inhibition of neointimal hyperplasia in vivo. In conclusion, porous NiTi holds promise as a desirable vascular drug delivery material, but a balanced consideration of the influence of porosity on both mechanical properties and cytocompatibility is necessary to achieve an optimal balance among drug-loading and release performance, mechanical properties, and cytocompatibility.

5.
BMC Genomics ; 25(1): 578, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858635

ABSTRACT

BACKGROUND: Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and ß-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear. RESULTS: Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family. CONCLUSIONS: The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.


Subject(s)
Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Genomics , Myrtaceae , Terpenes , Terpenes/metabolism , Genomics/methods , Myrtaceae/genetics , Myrtaceae/metabolism , Chromosomes, Plant/genetics , Phylogeny , Multigene Family
6.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921916

ABSTRACT

A series of TiN/ITO composite films with various thickness of ITO buffer layer were fabricated in this study. The enhancement of optical properties was realized in the composite thin films. The absorption spectra showed that absorption intensity in the near-infrared region was obviously enhanced with the increase of ITO thickness due to the coupling of surface plasma between TiN and ITO. The epsilon-near-zero wavelength of this composite can be tuned from 935 nm to 1895 nm by varying the thickness of ITO thin films. The nonlinear optical property investigated by Z-scan technique showed that the nonlinear absorption coefficient (ß = 3.03 × 10-4 cm/W) for the composite was about 14.02 times greater than that of single-layer TiN films. The theoretical calculations performed by finite difference time domain were in good agreement with those of the experiments.

7.
Water Res ; 260: 121936, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38917504

ABSTRACT

Without light at night, the system for photocatalytic degradation of refractory organic pollutants in aquatic environments based on free radicals will fall into a dormant state. Hence, a round-the-clock photocatalyst (CCN@SMSED) was prepared by in situ growth of cyanide-deficient g-C3N4 on the surface of Sr2MgSi2O7:Eu2+,Dy3+ through a simple calcination method. The CCN@SMSED exhibits an outstanding oxidative degradation ability for refractory tetracycline (TC) in water under both light and dark conditions, which is attributed to the synergistic effect of free radical (•O2- and •OH) and non-radical (h+ and 1O2). Electrochemical analyses further indicate that direct electron transfer (DET) is also one of the reasons for the efficient degradation of TC. Remarkably, the continuous working time of the round-the-clock photocatalyst in a dark environment was estimated for the first time (about 2.5 h in this system). The degradation pathways of TC mainly include demethylation, ring opening, deamination and dehydration, and the growth of Staphylococcus aureus shows that the process is biosafe. More importantly, CCN@SMSED holds significant promise for practical application due to its low energy consumption and suitability for removing TC from a variety of complex water bodies. This work provides an energy consumption reference for the practical application of round-the-clock photocatalytic degradation of organic pollutants.

8.
Article in English | MEDLINE | ID: mdl-38886269

ABSTRACT

Air pollution can cause disease and has become a major global environmental problem. It is currently believed that air pollution may be related to the progression of SSNHL. As a rapidly developing city in recent years, Hefei has serious air pollution. In order to explore the correlation between meteorological variables and SSNHL admissions, we conducted this study. This study investigated the short-term associations between SSNHL patients admitted to the hospital and Hefei climatic variables. The daily data on SSNHL-related hospital admissions and meteorological variables containing mean temperature (T-mean; °C), diurnal temperature range (DTR; °C), atmospheric pressure (AP; Hp), and relative humidity (RH; %), from 2014 to 2021 (2558 days), were collected. A time-series analysis integrating distributed lag non-linear models and generalized linear models was used. PubMed, Embase, Cochrane Library, and Web of Science databases were searched. Literature published up to August 2023 was reviewed to explore the potential impact mechanisms of meteorological factors on SSNHL. The mechanisms were determined in detail, focusing on wind speed, air pressure, temperature, humidity, and air pollutants. Using a median of 50.00% as a baseline, the effect of exceedingly low T-mean in the single-day hysteresis effect model began at a lag of 8 days (RR = 1.032, 95% CI: 1.001 ~ 1.064). High DTR affected the admission rate for SSNHL on lag 0 day. The significance of the effect was the greatest on that day (RR = 1.054, 95% CI: 1.007 ~ 1.104) and then gradually decreased. High and exceedingly high RH affected the admission rate SSNHL on lag 0 day, and these effects lasted for 8 and 7 days, respectively. There were significant associations between all grades of AP and SSNHL. This is the first study to assess the effect of meteorological variables on SSNHL-related admissions in China using a time-series approach. Long-term exposures to high DTR, RH values, low T-mean values, and all AP grades enhance the incidence of SSNHL in residents. Limiting exposure to extremes of ambient temperature and humidity may reduce the number of SSNHL-related hospital visits in the region. It is advisable to maintain a suitable living environment temperature and avoid extreme temperature fluctuations and high humidity. During periods of high air pollution, it is recommended to stay indoors and refrain from outdoor exercise.

9.
Front Mol Neurosci ; 17: 1359294, 2024.
Article in English | MEDLINE | ID: mdl-38706874

ABSTRACT

Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 µg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 µg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.

10.
Sci Data ; 11(1): 461, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710675

ABSTRACT

Oriental tobacco budworm (Helicoverpa assulta) and cotton bollworm (Helicoverpa armigera) are two closely related species within the genus Helicoverpa. They have similar appearances and consistent damage patterns, often leading to confusion. However, the cotton bollworm is a typical polyphagous insect, while the oriental tobacco budworm belongs to the oligophagous insects. In this study, we used Nanopore, PacBio, and Illumina platforms to sequence the genome of H. assulta and used Hifiasm to create a haplotype-resolved draft genome. The Hi-C technique helped anchor 33 primary contigs to 32 chromosomes, including two sex chromosomes, Z and W. The final primary haploid genome assembly was approximately 415.19 Mb in length. BUSCO analysis revealed a high degree of completeness, with 99.0% gene coverage in this genome assembly. The repeat sequences constituted 38.39% of the genome assembly, and we annotated 17093 protein-coding genes. The high-quality genome assembly of the oriental tobacco budworm serves as a valuable genetic resource that enhances our comprehension of how they select hosts in a complex odour environment. It will also aid in developing an effective control policy.


Subject(s)
Genome, Insect , Haplotypes , Moths , Animals , Moths/genetics , Chromosomes, Insect , Helicoverpa armigera
11.
Lung ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753182

ABSTRACT

BACKGROUND: Free fatty acids (FFAs) are established risk factors for various cardiovascular and metabolic disorders. Elevated FFAs can trigger inflammatory response, which may be associated with the occurrence of acute respiratory distress syndrome (ARDS) in cardiac surgery. In this prospective study, we aimed to investigate the association between circulating FFA and the incidence of ARDS, as well as the length of ICU stay, in patients undergoing off-pump coronary artery bypass grafting (CABG). METHODS: We conducted a single-center, prospective, observational study among patients undergoing off-pump CABG. The primary endpoint was the occurrence of ARDS within 6 days after off-pump CABG. Serum FFA were measured at baseline and 24 h post-procedure, and the difference (Δ-FFA) was calculated. RESULTS: A total of 180 patients were included in the primary analysis. The median FFA was 2.3 mmol/L (quartile 1 [Q1]-Q3, 1.4-3.2) at baseline and 1.5 mmol/L (Q1-Q3, 0.9-2.3) 24 h after CABG, with a Δ-FFA of 0.6 mmol/L (Q1-Q3, -0.1 to 1.6). Patients with elevated Δ-FFA levels had a significantly higher ARDS occurrence (55.6% vs. 22.2%; P < 0.001). Elevated Δ-FFA after off-pump CABG correlated with a significantly lower PaO2/FiO2 ratio, prolonged mechanical ventilation, and extended length of ICU stay. The area under the curve (AUC) of Δ-FFA for predicting ARDS (AUC, 0.758; 95% confidence interval, 0.686-0.831) significantly exceeded the AUC of postoperative FFA (AUC, 0.708; 95% CI 0.628-0.788; P < 0.001). CONCLUSIONS: Elevated Δ-FFA levels correlated with ARDS following off-pump CABG. Monitoring FFA may assist in identifying high-risk patients for ARDS, facilitating timely interventions to improve clinical outcomes.

12.
Int Urol Nephrol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776054

ABSTRACT

PURPOSE: Catheter displacement is a common complication of peritoneal dialysis. The aim of this study was to explore the correlation between catheter morphology and displacement by analyzing CT data, providing a scientific basis for optimizing catheter morphology within abdominal wall layers. METHODS: We retrospectively analyzed the clinical data of 94 patients. The parameters for analyzing catheter morphology were defined based on six key points identified from CT images. The covariates considered in the analysis included demographics, primary disease, body size, peritoneal dialysis method, and total weekly urea clearance index. RESULTS: During a mean follow-up period of 1056 ± 480 days, only the angle of the intramuscular part (IM angle) of the catheter significantly correlated with the time to first catheter displacement according to the multivariate analysis (hazard ratio [HR]: 1.039, 95% confidence interval [CI] 1.02-1.058, p < 0.01). When the cut-off value of IM angle was 39.4 ∘ , the area under receiver-operating characteristic (ROC) curve for predicting catheter displacement was 0.791 (95% CI 0.701-0.881, p < 0.01), with a sensitivity and specificity of 82.9% and 66.0%, respectively. Kaplan-Meier survival curves showed that the catheter survival rate was significantly higher in the group with an IM angle < 39.4 ∘ than in the group with an IM angle > 39.4 ∘ (log-rank χ 2 =19.479, p < 0.01). None of the catheter morphology parameters were significantly correlated with technique survival in the multivariate analysis. CONCLUSION: There is a correlation between catheter morphology and catheter displacement. An IM angle > 39.4 ∘ is an independent risk factor for catheter displacement, while the position and angle of the subcutaneous part are not correlated with catheter displacement.

13.
BMC Gastroenterol ; 24(1): 180, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778288

ABSTRACT

BACKGROUND: Intussusception presents a significant emergency that often necessitates bowel resection, leading to severe complications and management challenges. This study aims to investigate and establish a scoring system to enhance the prediction of bowel resection necessity in pediatric intussusception patients. METHODS: This retrospective study analyzed 660 hospitalized patients with intussusception who underwent surgical management at a pediatric hospital in Southwest China from April 2008 to December 2020. The necessity of bowel resection was assessed and categorized in this cohort. Variables associated with bowel resection were examined using univariate and multivariate logistic regression analyses. Based on these analyses, a scoring system was developed, grounded on the summation of the coefficients (ß). RESULTS: Among the 660 patients meeting the inclusion criteria, 218 required bowel resection during surgery. Bowel resection occurrence was linked to an extended duration of symptoms (Odds Ratio [OR] = 2.14; 95% Confidence Interval [CI], 1.03-5.23; P = 0.0015), the presence of gross bloody stool (OR = 8.98; 95% CI, 1.76-48.75, P < 0.001), elevated C-reactive protein levels (OR = 4.79; 95% CI, 1.12-28.31, P = 0.0072), lactate clearance rate (LCR) (OR = 17.25; 95% CI, 2.36-80.35; P < 0.001), and the intussusception location (OR = 12.65; 95% CI, 1.46-62.67, P < 0.001), as determined by multivariate logistic regression analysis. A scoring system (totaling 14.02 points) was developed from the cumulative ß coefficients, with a threshold of 5.22 effectively differentiating infants requiring surgical intervention from others with necrotizing enterocolitis (NEC), exhibiting a sensitivity of 78.3% and a specificity of 71.9%. CONCLUSIONS: This study successfully identified multiple risk factors for bowel resection and effectively used a scoring system to identify patients for optimal clinical management.


Subject(s)
Intussusception , Humans , Intussusception/surgery , Intussusception/diagnosis , Retrospective Studies , Male , Female , Infant , Child, Preschool , China , C-Reactive Protein/analysis , Digestive System Surgical Procedures/methods , Logistic Models , Child , Risk Factors
14.
Ann Med ; 56(1): 2344821, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38697138

ABSTRACT

BACKGROUND: To compare the effectiveness, cost, and safety of four regimens recommended by the World Health Organization (WHO) for rifampicin resistance/multidrug-resistance tuberculosis (RR/MDR-TB) Treatment in Eastern China. METHODS: We performed a cohort study among patients with RR/MDR between 2020 and 2022 in Jiangsu Province. The treatment success rate, cost, and drug adverse reaction rate were compared. RESULTS: Between 2020 and 2022, 253 RR/MDR-TB patients were enrolled in the study. 37 (14.62%), 76 (30.04%), 74 (29.25%), and 66 (26.09%) patients had the short-term regimens, the new long-term oral regimens, the new long-term injectable regimens, and the traditional long-term regimens, respectively. The treatment success rate was the highest among patients treated with the short-term regimen (75.68%) and was the lowest among patients treated with the traditional long-term regimens (60.61%). The estimated mean cost per favorable outcome was 142.61 thousand Chinese Yuan (CNY), and the short-term regimens showed the lowest cost in the four regimes (88.51 thousand CNY vs. 174.24 thousand CNY, 144.00 thousand CNY, and 134.98 thousand CNY). Incremental cost-effectiveness ratios of the short-term regimens, the new long-term oral regimen, and the new long-term injectable regimens were -3083.04, 6040.09, and 819.68 CNY compared to the traditional long-term regimens. CONCLUSIONS: For RR/MDR-TB patients in China who meet the criteria for short-term regimens, the short-term regimens were proven to be the most cost-effective of the four regimens recommended by WHO. For RR/MDR-TB patients in China who don't meet the criteria for short-term regimens, the new long-term injectable regimens are more cost-effective than the remaining two regimens.


This is the first study to evaluate the effectiveness, cost, and safety of four regimens recommended by the WHO for RR/MDR-TB treatment in China.For RR/MDR-TB patients in China who meet the criteria for the short-term regimens, the short-term regimens were proven to be the most cost-effective of the four regimens recommended by WHO.


Subject(s)
Antitubercular Agents , Cost-Benefit Analysis , Rifampin , Tuberculosis, Multidrug-Resistant , World Health Organization , Humans , China , Male , Female , Middle Aged , Adult , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/economics , Rifampin/adverse effects , Rifampin/administration & dosage , Rifampin/economics , Rifampin/therapeutic use , Antitubercular Agents/adverse effects , Antitubercular Agents/administration & dosage , Antitubercular Agents/economics , Treatment Outcome , Cohort Studies , Drug Therapy, Combination , Aged , Young Adult , Adolescent , Cost-Effectiveness Analysis
15.
Nanomicro Lett ; 16(1): 206, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819527

ABSTRACT

The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human-machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.

16.
Langmuir ; 40(23): 12191-12199, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814134

ABSTRACT

It is of great significance to construct a Z-scheme heterojunction for improving solar light harvesting and achieving efficient separation of photogenerated carriers and then enhancement of the photocatalytic performance of semiconductor photocatalysts. Herein, the direct Z-scheme PI/Ag2WO4 heterojunction was designed and prepared according to the band edge potentials of the semiconductor. Due to the fact that the Z-scheme structure not only endowed the PI/Ag2WO4 composites with efficient separation of photogenerated electron-hole pairs but also reserved the redox ability of the valence band and conduction band of monophase catalysts, the 50% PI/Ag2WO4 heterojunction exhibited excellent photocatalytic activity, which were 2.9 and 1.5 times those of the PI and Ag2WO4 photocatalysts, respectively. The photocatalytic reaction mechanism of PI/Ag2WO4 composites was confirmed by the results of TEM, UV-vis, XPS, and EPR experiments. This work provides a feasible strategy to design high-performance photocatalysts in the field of practice purification of wastewater.

17.
J Invertebr Pathol ; 205: 108129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754546

ABSTRACT

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Moths , Animals , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Moths/metabolism , Moths/microbiology , Binding Sites , Bacillus thuringiensis/metabolism , Pest Control, Biological , Protein Domains , Helicoverpa armigera
18.
Article in English | MEDLINE | ID: mdl-38771681

ABSTRACT

Electromyographic (EMG) signals have gained popularity for controlling prostheses and exoskeletons, particularly in the field of upper limbs for stroke patients. However, there is a lack of research in the lower limb area, and standardized open-source datasets of lower limb EMG signals, especially recording data of Asian race features, are scarce. Additionally, deep learning algorithms are rarely used for human motion intention recognition based on EMG, especially in the lower limb area. In response to these gaps, we present an open-source benchmark dataset of lower limb EMG with Asian race characteristics and large data volume, the JJ dataset, which includes approximately 13,350 clean EMG segments of 10 gait phases from 15 people. This is the first dataset of its kind to include the nine main muscles of human gait when walking. We used the processed time-domain signal as input and adjusted ResNet-18 as the classification tool. Our research explores and compares multiple key issues in this area, including the comparison of sliding time window method and other preprocessing methods, comparison of time-domain and frequency-domain signal processing effects, cross-subject motion recognition accuracy, and the possibility of using thigh and calf muscles in amputees. Our experiments demonstrate that the adjusted ResNet can achieve significant classification accuracy, with an average accuracy rate of 95.34% for human gait phases. Our research provides a valuable resource for future studies in this area and demonstrates the potential for ResNet as a robust and effective method for lower limb human motion intention pattern recognition.


Subject(s)
Algorithms , Deep Learning , Electromyography , Gait , Lower Extremity , Humans , Electromyography/methods , Male , Adult , Gait/physiology , Female , Muscle, Skeletal/physiology , Signal Processing, Computer-Assisted , Young Adult , Movement/physiology , Walking/physiology , Neural Networks, Computer , Intention
19.
World J Clin Oncol ; 15(3): 419-433, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38576593

ABSTRACT

BACKGROUND: Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis. AIM: To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients. METHODS: A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model. RESULTS: The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant (P < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice. CONCLUSION: This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.

20.
Eur Spine J ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584243

ABSTRACT

BACKGROUND: Spinal multiple myeloma (MM) and solitary plasmacytoma of bone (SPB), both plasma cell neoplasms, greatly affect patients' quality of life due to spinal involvement. Accurate prediction of surgical outcomes is crucial for personalized patient care, but systematic treatment guidelines and predictive models are lacking. OBJECTIVE: This study aimed to develop and validate a machine learning (ML)-based model to predict postoperative outcomes and identify prognostic factors for patients with spinal MM and SPB. METHODS: A retrospective analysis was conducted on patients diagnosed with MM or SPB from 2011 to 2015, followed by prospective data collection from 2016 to 2017. Patient demographics, tumor characteristics, clinical treatments, and laboratory results were analyzed as input features. Four types of ML algorithms were employed for model development. The performance was assessed using discrimination and calibration measures, and the Shapley Additive exPlanations (SHAP) method was applied for model interpretation. RESULTS: A total of 169 patients were included, with 119 for model training and 50 for validation. The Gaussian Naïve Bayes (GNB) model exhibited superior predictive accuracy and stability. Prospective validation on the 50 patients revealed an area under the curve (AUC) of 0.863, effectively distinguishing between 5-year survivors and non-survivors. Key prognostic factors identified included International Staging System (ISS) stage, Durie-Salmon (DS) stage, targeted therapy, and age. CONCLUSIONS: The GNB model has the best performance and high reliability in predicting postoperative outcomes. Variables such as ISS stage and DS stage were significant in influencing patient prognosis. This study enhances the ability to identify patients at risk of poor outcomes, thereby aiding clinical decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL
...