Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Pediatr Blood Cancer ; : e31177, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967594

ABSTRACT

INTRODUCTION: Thalassemia represents a significant public health challenge globally. However, the global burden of thalassemia and the disparities associated with it remain poorly understood. Our study aims to uncover the long-term spatial and temporal trends in thalassemia at global, regional, and national levels, analyze the impacts of age, time periods, and birth cohorts, and pinpoint the global disparities in thalassemia burden. METHODS: We extracted data on the thalassemia burden from the Global Burden of Disease Study (GBD) 2019. We employed a joinpoint regression model to assess temporal trends in thalassemia burden and an age-period-cohort model to evaluate the effects of age, period, and cohort on thalassemia mortality. RESULTS: From 1990 to 2019, the number of thalassemia incident cases, prevalent cases, mortality cases, and disability-adjusted life years (DALYs) decreased by 20.9%, 3.1%, 38.6%, and 43.1%, respectively. Age-standardized rates of incidence, prevalence, mortality, and DALY declined across regions with high, high-middle, middle, and low-middle sociodemographic index (SDI), yet remained the highest in regions with low SDI and low-middle SDI as well as in Southeast Asia, peaking among children under five years of age. The global prevalence rate was higher in males than in females. The global mortality rate showed a consistent decrease with increasing age. CONCLUSION: The global burden of thalassemia has significantly declined, yet notable disparities exist in terms of gender, age groups, periods, birth cohorts, SDI regions, and GBD regions. Systemic interventions that include early screening, genetic counseling, premarital health examinations, and prenatal diagnosis should be prioritized in regions with low, and low-middle SDI, particularly in Southeast Asia. Future population-based studies should focus specifically on thalassemia subtypes and transfusion requirements, and national registries should enhance data capture through newborn screening.

2.
Int J Nanomedicine ; 19: 5125-5138, 2024.
Article in English | MEDLINE | ID: mdl-38855730

ABSTRACT

Purpose: Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods: Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results: The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion: In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Doxorubicin , Liposomes , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Mice , Liposomes/chemistry , MCF-7 Cells , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Cell Proliferation/drug effects , Mice, Inbred BALB C , NIH 3T3 Cells , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Particle Size , Nanoparticle Drug Delivery System/chemistry , Drug Delivery Systems/methods , Cell Movement/drug effects , Nanoparticles/chemistry
3.
Epidemiol Psychiatr Sci ; 33: e28, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764153

ABSTRACT

AIMS: Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990-2019. METHODS: We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age-period-cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors. RESULTS: During 1990-2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990-2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60-64 in women, and at the age of 75-84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5-9. Population living during 2000-2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively. CONCLUSIONS: Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000-2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.


Subject(s)
Depressive Disorder, Major , Global Burden of Disease , Global Health , Humans , Depressive Disorder, Major/epidemiology , Risk Factors , Global Burden of Disease/trends , Female , Male , Incidence , Global Health/statistics & numerical data , Adult , Prevalence , Middle Aged , Spatio-Temporal Analysis , Aged , Disability-Adjusted Life Years/trends , Young Adult , Cost of Illness , Adolescent
4.
J Affect Disord ; 359: 287-299, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788859

ABSTRACT

BACKGROUND: Studies have been conducted on the relationship between depression and thyroid diseases and function, its causal relationship remains unclear. METHODS: Using summary statistics of genome-wide association studies of European and East Asian ancestry, we conducted 2-sample bidirectional Mendelian randomization to estimate the association between MDD and thyroid function (European: normal range TSH, T4, T3, fT4, TPOAb levels and TPOAb-positives; East Asian: T4) and thyroid diseases (hypothyroidism, hyperthyroidism, and Hashimoto's thyroiditis), and used Mediation analysis to evaluate potential mediators (alcohol intake, antidepressant) of the association and calculate the mediated proportions. RESULTS: It was observed a significant causal association between MDD on hypothyroidism (P = 8.94 × 10-5), hyperthyroidism (P = 8.68 × 10-3), and hashimoto's thyroiditis (P = 3.97 × 10-5) among European ancestry, which was mediated by Alcohol intake (alcohol intake versus 10 years previously for hypothyroidism (P = 0.026), hashimoto's thyroiditis (P = 0.042), and alcohol intake frequency for hypothyroidism (P = 0.015)) and antidepressant (for hypothyroidism (P = 0.008), hashimoto's thyroiditis (P = 0.010)), but not among East Asian ancestry (PMDD-hypothyroidism = 0.016, but ß direction was different; PMDD-hyperthyroidism = 0.438; PMDD-hashimoto's thyroiditis = 0.496). There was no evidence for bidirectional causal association between thyroid function mentioned above and MDD among both ancestry (all P > 0.05). CONCLUSION: We importantly observed a significant causal association between MDD on risk of hypothyroidism, hyperthyroidism, and hashimoto's thyroiditis among European ancestry, and Alcohol intake and antidepressant as mediators for prevention of hypothyroidism, hashimoto's thyroiditis attributable to MDD.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Mendelian Randomization Analysis , Thyroid Diseases , White People , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Thyroid Diseases/genetics , Thyroid Diseases/epidemiology , White People/genetics , White People/statistics & numerical data , Mediation Analysis , Asian People/genetics , Asian People/statistics & numerical data , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Antidepressive Agents/therapeutic use , Hashimoto Disease/genetics , Hashimoto Disease/epidemiology , Hyperthyroidism/genetics , Hyperthyroidism/epidemiology , Hyperthyroidism/complications , Male , Female
5.
Trends Immunol ; 45(3): 177-187, 2024 03.
Article in English | MEDLINE | ID: mdl-38433029

ABSTRACT

The MHC-I antigen presentation (AP) pathway is key to shaping mammalian CD8+ T cell immunity, with its aberrant expression closely linked to low tumor immunogenicity and immunotherapy resistance. While significant attention has been given to genetic mutations and downregulation of positive regulators that are essential for MHC-I AP, there is a growing interest in understanding how tumors actively evade MHC-I expression and/or AP through the induction of MHC-I inhibitory pathways. This emerging field of study may offer more viable therapeutic targets for future cancer immunotherapy. Here, we explore potential mechanisms by which cancer cells evade MHC-I AP and function and propose therapeutic strategies that might target these MHC-I inhibitors to restore impaired T cell immunity within the tumor microenvironment (TME).


Subject(s)
Histocompatibility Antigens Class I , Neoplasms , Animals , Humans , Histocompatibility Antigens Class I/metabolism , CD8-Positive T-Lymphocytes , Immunotherapy , Antigens, Neoplasm , Mammals , Tumor Microenvironment
6.
Metabolites ; 14(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535291

ABSTRACT

With its high resolving power and sensitivity, mass spectrometry is considered the most informative technique for metabolite qualitation and quantification in the plant sciences. However, the spatial location information, which is crucial for the exploration of plant physiological mechanisms, is lost. Mass spectrometry imaging (MSI) is able to visualize the spatial distribution of a large number of metabolites from the complex sample surface in a single experiment. In this paper, a flexible and low-cost laser desorption-dielectric barrier discharge ionization-MSI (LD-DBDI-MSI) platform was constructed by combining an LD system with an in-line DBDI source, a high-precision sample translation stage, and an ambient mass spectrometer. It can be operated at a spatial resolution of 20 µm in an atmospheric environment and requires minimal sample preparation. This study presents images of in-situ metabolic profiling of two kinds of plants from different origins, a wild and a farmed Rheum palmatum L. From the screen of these two root sections, the wild one presented five more endogenous molecules than the farmed one, which provides information about the differences in metabolomics.

7.
Radiology ; 310(3): e232605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530176

ABSTRACT

Background Detection of extranodal extension (ENE) at pathology is a poor prognostic indicator for rectal cancer, but whether ENE can be identified at pretreatment MRI is, to the knowledge of the authors, unknown. Purpose To evaluate the performance of pretreatment MRI in detecting ENE using a matched pathologic reference standard and to assess its prognostic value in patients with rectal cancer. Materials and Methods This single-center study included a prospective development data set consisting of participants with rectal adenocarcinoma who underwent pretreatment MRI and radical surgery (December 2021 to January 2023). MRI characteristics were identified by their association with ENE-positive nodes (χ2 test and multivariable logistic regression) and the performance of these MRI features was assessed (area under the receiver operating characteristic curve [AUC]). Interobserver agreement was assessed by Cohen κ coefficient. The prognostic value of ENE detected with MRI for predicting 3-year disease-free survival was assessed by Cox regression analysis in a retrospective independent validation cohort of patients with locally advanced rectal cancer (December 2019 to July 2020). Results The development data set included 147 participants (mean age, 62 years ± 11 [SD]; 87 male participants). The retrospective cohort included 110 patients (mean age, 60 years ± 9; 79 male participants). Presence of vessel interruption and fusion (both P < .001), heterogeneous internal structure, and the broken-ring and tail signs (odds ratio range, 4.10-23.20; P value range, <.001 to .002) were predictors of ENE at MRI, and together achieved an AUC of 0.91 (95% CI: 0.88, 0.93) in detecting ENE. Interobserver agreement was moderate for the presence of vessel interruption and fusion (κ = 0.46 for both) and substantial for others (κ = 0.61-0.67). The presence of ENE at pretreatment MRI was independently associated with worse 3-year disease-free survival (hazard ratio, 3.00; P = .02). Conclusion ENE can be detected at pretreatment MRI, and its presence was associated with worse prognosis for patients with rectal cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Eberhardt in this issue.


Subject(s)
Neoplasms, Second Primary , Rectal Neoplasms , Humans , Male , Middle Aged , Extranodal Extension , Prognosis , Prospective Studies , Retrospective Studies , Rectal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging
8.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483996

ABSTRACT

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Subject(s)
Histocompatibility Antigens Class II , T-Lymphocytes , Animals , Humans , Mice , Dimerization , Fibrinogen/metabolism , Ligands , Mutation
9.
Appl Opt ; 63(5): 1265-1271, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437306

ABSTRACT

This paper demonstrates a high-energy, single-longitudinal-mode (SLM), actively Q-switched fiber laser based on the injection seeding technique. The large-mode-area double-cladding fiber is used as the gain medium to improve energy storage. Simultaneously, by using the linear electro-optic effect of the negative uniaxial crystal (ß-B a B 2 O 4, BBO), a matching frequency-shift-free Q-switch with high damage threshold and high extinction-ratio is designed. Before reaching the stimulated Brillouin scattering threshold, the SLM Q-switched pulses can be achieved with energy higher than 15 µJ over a wide range of repetition rates from 10 to 80 kHz, and the maximum output power reaches 1.2 W at the repetition rate of 80 kHz, which may be the highest output pulse energy for such a SLM Q-switched fiber laser so far, to our best knowledge.

10.
Infect Dis Poverty ; 13(1): 18, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374211

ABSTRACT

BACKGROUND: Brucellosis is a severe zoonotic disease that is often overlooked, particularly in impoverished countries. Timely identification of focal complications in brucellosis is crucial for improving treatment outcomes. However, there is currently a lack of established indicators or biomarkers for diagnosing these complications. Therefore, this study aimed to investigate potential warning signs of focal complications in human brucellosis, with the goal of providing practical parameters for clinicians to aid in the diagnosis and management of patients. METHODS: A multi-center cross-sectional study was conducted in China from December 2019 to August 2021. The study aimed to investigate the clinical characteristics and complications of patients with brucellosis using a questionnaire survey and medical record system. The presence of warning signs for complications was assessed using univariate and multivariate logistic regression models. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used for variable screening and model evaluation. RESULTS: A total of 880 participants diagnosed with human brucellosis were enrolled. The median age of the patients was 50 years [interquartile range (IQR): 41.5-58.0], and 54.8% had complications. The most common organ system affected by complications was the osteoarticular system (43.1%), with peripheral arthritis (30.0%), spondylitis (16.6%), paravertebral abscess (5.0%), and sacroiliitis (2.7%) being the most prevalent. Complications in other organ systems included the genitourinary system (4.7%), respiratory system (4.7%), and hematologic system (4.6%). Several factors were found to be associated with focal brucellosis. These factors included a long delay in diagnosis [odds ratio (OR) = 3.963, 95% confidence interval (CI) 1.906-8.238 for > 90 days], the presence of underlying disease (OR = 1.675, 95% CI 1.176-2.384), arthralgia (OR = 3.197, 95% CI 1.986-5.148), eye bulging pain (OR = 3.482, 95% CI 1.349-8.988), C-reactive protein (CRP) > 10 mg/L (OR = 1.910, 95% CI 1.310-2.784) and erythrocyte sedimentation rate (ESR) elevation (OR = 1.663, 95% CI 1.145-2.415). The optimal cutoff value in ROC analysis was > 5.4 mg/L for CRP (sensitivity 73.4% and specificity 51.9%) and > 25 mm/h for ESR (sensitivity 47.9% and specificity 71.1%). CONCLUSIONS: More than 50% of patients with brucellosis experienced complications. Factors such as diagnostic delay, underlying disease, arthralgia, eye pain, and elevated levels of CRP and ESR were identified as significant markers for the development of complications. Therefore, patients presenting with these conditions should be closely monitored for potential complications, regardless of their culture results and standard tube agglutination test titers.


Subject(s)
Brucellosis , Delayed Diagnosis , Humans , Middle Aged , Arthralgia/complications , Brucellosis/complications , Brucellosis/diagnosis , Brucellosis/epidemiology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Cross-Sectional Studies , Incidence , Retrospective Studies , Adult
11.
Talanta ; 271: 125647, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38224660

ABSTRACT

Diabetes is a common chronic metabolic disease. The frequent fluctuation of glucose is the main cause of most diabetes complications, which in turn causes harm to the health of patients. Surface-enhanced Raman scattering (SERS) spectroscopy has attracted much attention in the rapid detection of glucose due to its unique molecular fingerprinting ability, ultra-high sensitivity and fast response. However, due to the low affinity between glucose and SERS substrate, poor signal, susceptibility to complex environmental interference, and poor stability of SERS detection, it is still a challenge for SERS to accurately and sensitively determine glucose in complex environments. In this work, we encapsulated 4-mercaptobutyronitrile (4-MBN) as an internal standard (IS) in Au@Ag NRs inside and then Au@4-MBN@Ag NRs, Leucomalachite Green (LMG), glucose oxidase (GOx) and horseradish peroxidase (HPR) were encapsulated in ZIF-8 to prepare a tandem enzyme catalytic ratiometric SERS sensor Au@4-MBN@Ag@LMG@ZIF-8(GOx, HPR) for the detection of glucose in saliva. Because ZIF-8 enhanced the catalytic activity of the enzyme, the ability of glucose enrichment, and weakens the aggregation of Ag NRs. The internal standard signal molecule improves the accuracy and sensitivity of detection. The ratiometric Raman signal I412/I2233 of glucose has a good linear relationship with the concentration in the range of 0.1-100 µM, and the limit of detection (LOD) could be down to 0.03 µM. At the same time, it has excellent selectivity, repeatability and accuracy. The recovery rate of glucose in saliva is 96.50%-105.56 %, which proves the feasibility of the method. The Au@4-MBN@Ag@LMG@ZIF-8(GOx, HPR) sensor prepared in this study showed excellent SERS performance, which was able to detect glucose quickly, sensitively and accurately. This work provides a new strategy for the design of enzyme-catalyzed SERS sensors.


Subject(s)
Glucose , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Glucose Oxidase/chemistry
12.
Anal Chem ; 95(46): 16791-16795, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37937882

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 µg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.

13.
Theor Appl Genet ; 136(12): 240, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37930446

ABSTRACT

KEY MESSAGE: Five environmentally stable QTLs for spikelet number per spike and days to heading were identified using a high-genetic map containing 95,444 SNPs, among which QSns.ucas-5B was validated using residual heterozygous line at multiple environments. Spikelet number per spike (SNS) and days to heading (DTH) play pivotal roles in the improvement of wheat yield. In this study, a high-density genetic map for a recombinant inbred lines (RILs) population derived from Zhengnong 17 (ZN17) and Yangbaimai (YBM) was constructed using 95,444 single-nucleotide polymorphism (SNP) markers from the Wheat660K SNP array. Our study identified a total of five environmentally stable QTLs for SNS and DTH, one of which was named QSns.ucas-5B, with a physical interval of approximately 545.4-552.1 Mb on the 5BL chromosome arm. Importantly, the elite haplotype within QSns.ucas-5B showed a consistent and positive effect on SNS, grain number and weight per spike, without extending the days to heading. These findings provide a foundation for future efforts to map and clone the gene(s) responsible for QSns.ucas-5B and further indicate the potential application of the developed and validated InDel marker of QSns.ucas-5B for molecular breeding purposes, aimed at improving wheat grain yield.


Subject(s)
Bread , Triticum , Triticum/genetics , Quantitative Trait Loci , DNA Shuffling , Edible Grain
14.
Psychiatry Res ; 329: 115528, 2023 11.
Article in English | MEDLINE | ID: mdl-37837811

ABSTRACT

BACKGROUND: At present, the relationship between sleep and inflammatory factors is not clear. The aim of this study was to investigate the relationship between specific inflammatory factors and sleep in MDD patients. METHODS: We measured and compared clinical features and 10 peripheral blood inflammatory factors in 40 MDD patients with sleep disorders, 80 MDD patients without sleep disorders, and 80 healthy controls. Correlation analysis and multiple linear regression analysis were used to explore the relationship between sleep and inflammatory factors. RESULT: The levels of IL-1ß, IL-2, IL-6, IL-8, IL-10, CRP, TNF-α, CXCL-1, CXCL-2, and IFN-γ were different among the three groups(all p<0.05).Poor sleep quality was significantly negatively correlated with IL-2 and IL-8 (all p<0.01), and significantly positively correlated with IL-6, IL-10, CRP, TNF-α, CXCL-1, CXCL-2 and IFN-γ (all p<0.01). IL-8 could significantly negatively predict the deterioration of sleep quality (p<0.001), and TNF-a and IFN-γ could significantly positively predict the deterioration of sleep quality (all p<0.05). LIMITATIONS: The self-rating scale was used in this study. CONCLUSIONS: Inflammatory factors are disrupted in patients with sleep disorders. The lower the level of IL-8 in peripheral blood of MDD patients, the higher the TNF-a and IFN-γ, and the worse the quality of sleep.


Subject(s)
Depressive Disorder, Major , Sleep Wake Disorders , Humans , Depressive Disorder, Major/complications , Interleukin-10 , Tumor Necrosis Factor-alpha , Cytokines , Interleukin-6 , Interleukin-2 , Interleukin-8 , Inflammation/complications , Sleep , Sleep Wake Disorders/etiology
15.
Anal Chem ; 95(33): 12470-12477, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37560898

ABSTRACT

Local anesthetics, drugs that only affect a restricted area of the body, are widely used in daily clinical practice. Less studied but equally important is the distribution of local anesthetics inside organisms. Here, we present a rapid in situ testing method of drug distribution in various organs. The temporal and spatial distribution of anesthetics in mice was measured by solid-phase microextraction (SPME), thermal desorption (TD), and dielectric barrier discharge ionization (DBDI) atmospheric pressure mass spectrometry. A coated SPME probe using a tungsten wire as the support covered with a carbonaceous material was prepared by a simple, low-cost flame method. An in-line structure of the inlet allows TD and DBDI to share the same capillary tube, which greatly improves the transmission efficiency. Nine kinds of anesthetics, such as lidocaine and dyclonine, were detected, and the limit of detection was determined to be as low as 13 pg/mL. In addition, the time-dependent distribution of drugs in mice organs was studied. We also found that macromolecules in organisms do not noticeably interfere with the detection. This method is convenient and efficient because it does not require tissue homogenates and allows direct in situ detection. Compared with the conventional analytical methods, this method is simple and rapid, works in situ, and allows microscale analysis of trace analytes in biological organisms with high sensitivity.


Subject(s)
Anesthetics, Local , Solid Phase Microextraction , Animals , Mice , Mass Spectrometry/methods , Solid Phase Microextraction/methods , Spatio-Temporal Analysis
16.
Cell ; 186(18): 3903-3920.e21, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37557169

ABSTRACT

Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.


Subject(s)
Histocompatibility Antigens Class I , Neoplasms , Tumor Escape , Humans , Antigen Presentation , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Neoplasms/immunology , Ubiquitin-Protein Ligases/genetics
17.
Plant Cell ; 35(12): 4199-4216, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37647532

ABSTRACT

Breeding has dramatically changed the plant architecture of wheat (Triticum aestivum), resulting in the development of high-yielding varieties adapted to modern farming systems. However, how wheat breeding shaped the genomic architecture of this crop remains poorly understood. Here, we performed a comprehensive comparative analysis of a whole-genome resequencing panel of 355 common wheat accessions (representing diverse landraces and modern cultivars from China and the United States) at the phenotypic and genomic levels. The genetic diversity of modern wheat cultivars was clearly reduced compared to landraces. Consistent with these genetic changes, most phenotypes of cultivars from China and the United States were significantly altered. Of the 21 agronomic traits investigated, 8 showed convergent changes between the 2 countries. Moreover, of the 207 loci associated with these 21 traits, more than half overlapped with genomic regions that showed evidence of selection. The distribution of selected loci between the Chinese and American cultivars suggests that breeding for increased productivity in these 2 regions was accomplished by pyramiding both shared and region-specific variants. This work provides a framework to understand the genetic architecture of the adaptation of wheat to diverse agricultural production environments, as well as guidelines for optimizing breeding strategies to design better wheat varieties.


Subject(s)
Genome, Plant , Triticum , United States , Triticum/genetics , Genome, Plant/genetics , Plant Breeding , Phenotype , China , Genetic Variation
18.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37327784

ABSTRACT

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Subject(s)
Gasdermins , Neoplasm Proteins , Mice , Animals , Caspase 3/metabolism , Neoplasm Proteins/metabolism , Pyroptosis , Intestine, Small/metabolism , Immune Tolerance
19.
Mol Med Rep ; 28(2)2023 08.
Article in English | MEDLINE | ID: mdl-37326031

ABSTRACT

All­trans retinoic acid (ATRA) has been implicated in the differentiation of hepatic stellate cells (HSCs). In the present study, the liver­targeting hyaluronic acid micelles (ADHG) were prepared for co­delivery of ATRA and doxorubicin (DOX) to block the HSC­hepatoma interrelation. To simulate the tumor microenvironment, an in vitro dual­cell model and an in vivo co­implantation mouse model were established for anticancer studies. The experimental methods involved the MTT assay, wound­healing assay, cellular uptake, flow cytometry and and in vivo antitumor study. The results revealed that the HSCs in the research models notably promoted tumor proliferation and migration. Furthermore, ADHG were readily internalized by cancer cells and HSCs simultaneously, and widely distributed in cancer regions. The in vivo antitumor studies demonstrated that ADHG could notably decrease HSC activation and extracellular matrix deposition, as well as constrain tumor growth and metastasis. Therefore, ATRA could facilitate DOX­induced anti­proliferation and anti­metastasis effects, and ADHG are a promising nano­sized formulation for the combination therapy of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Hyaluronic Acid , Mice , Animals , Hyaluronic Acid/pharmacology , Hepatic Stellate Cells , Tretinoin/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Tumor Microenvironment
20.
J Biomed Mater Res A ; 111(3): 404-414, 2023 03.
Article in English | MEDLINE | ID: mdl-36479810

ABSTRACT

Recent efforts have focused on preparing drug-loaded hydrogel for wound healing. In order to obtain an ideal hydrogel dressing for skin wound repair, a carboxymethyl chitosan-gelatin hydrogel was prepared for co-delivery of SP (substance P) and DMOG (dimethyloxallyl glycine) by a chemical cross-linking method using genipin as the cross-linking agent. The synthesized hydrogels have good biocompatibility and physicochemical properties due to the low toxicity of the hydrogel material. The three-dimensional network structure of the hydrogels supports cell migration and proliferation, and the combination of SP and DMOG drugs exhibited strong effects on cell proliferation. Moreover, the co-loaded drug hydrogels could significantly promote wound healing in vivo, and provide a potential hydrogel for wound healing.


Subject(s)
Chitosan , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Chitosan/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Substance P/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...