Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nematol ; 52: 1-8, 2020.
Article in English | MEDLINE | ID: mdl-32180386

ABSTRACT

Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.Banana (Musa spp. L.) is an important staple food and cash crop for about 30% of the population in Tanzania; however, the burrowing plant-parasitic nematode Radopholus similis causes black head disease and toppling in banana plants, which results in yield losses. We collected and identified 80 specimens of R. similis from four agro-ecological zones in Tanzania using morphological characters. We then used universal and specific R. similis primers to amplify the small subunit, internal transcribed spacer and large subunit of ribosomal DNA regions of these specimens. The amplicons were subsequently sequenced and analyzed using Bayesian inference. We identified two major clades, one that comprised all R. similis sequences derived from this study and another that included R. similis and Radopholus spp. sequences obtained from GenBank, indicating the separation of this species from congeneric sequences. Our findings provide a useful, simple and rapid method for identifying burrowing nematodes. This outcome could contribute to the development of permanent, integrated pest management strategies for the control of R. similis in banana and other crops in order to reduce associated yield losses in Tanzania. To our knowledge, this is the first study of nematodes to use combined morphological and molecular methods for the identification of R. similis in Tanzania.

2.
Physiol Mol Plant Pathol ; 105: 3-16, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007371

ABSTRACT

Sweetpotato (Ipomoea batatas) is a vital crop for overcoming food insecurity in sub-Saharan Africa and its production is highest in East Africa where yields are high and the growing seasons are short. This cross-country study assessed farmers' local practices and their knowledge of the biotic constraints to sweetpotato production in Uganda, Rwanda, Kenya and Tanzania with the aim of providing empirical data that can ultimately be used to enhance sweetpotato production in these four countries. We collected data from 675 households using a standardized questionnaire integrated with a web-based mobile app. Survey results provided strong evidence that sweetpotato is valued as an important subsistence crop among smallholder farmers on pieces of land of less than 0.4 ha, and we observed that females were more involved than males in sweetpotato production. Sweetpotato was ranked as the second most important staple crop after cassava. Farmers noted an increase in sweetpotato production over the past five years in Uganda and Kenya but a decrease in Rwanda and Tanzania; the proportion of farmers who reported a decrease (33%) and an increase (36%) did not significantly differ. The main constraints to production were reported to be pests (32.6%), drought (21.6%), diseases (11.9%) and lack of disease-free planting materials (6.8%). Farmers recognized the signs and symptoms associated with sweetpotato diseases on leaves, root tubers, and whole plants, but most were unable to assign the disease type (bacterial, fungal or viral) correctly. We suggest that regional governments improve education, increase the provision of clean planting materials and strengthen breeding programs to improve disease resistance.

3.
Physiol Mol Plant Pathol ; 105: 102-109, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007378

ABSTRACT

Pratylenchus coffeae is among the plant parasitic nematodes contributing to yield losses of banana. To determine the status of P. coffeae, a survey was conducted in banana-growing regions of Tanzania and samples collected. The results indicated that in 2015 there was an increase in total counts of P. coffeae extracted from roots compared to that reported in 1999 in Unguja West, North and South. Moreover, we noted its presence for the first time in mainland Tanzania. Generally, the densities of P. coffeae were high on banana roots collected at 500-1000 m above sea level. This information on the status of P. coffeae is important in planning management of nematodes in Tanzania.

4.
Annu Rev Phytopathol ; 56: 381-403, 2018 08 25.
Article in English | MEDLINE | ID: mdl-29958072

ABSTRACT

Sub-Saharan Africa (SSA) is a region beset with challenges, not least its ability to feed itself. Low agricultural productivity, exploding populations, and escalating urbanization have led to declining per capita food availability. In order to reverse this trend, crop production systems must intensify, which brings with it an elevated threat from pests and diseases, including plant-parasitic nematodes. A holistic systems approach to pest management recognizes disciplinary integration. However, a critical under-representation of nematology expertise is a pivotal shortcoming, especially given the magnitude of the threat nematodes pose under more intensified systems. With more volatile climates, efficient use of water by healthy root systems is especially crucial. Within SSA, smallholder farming systems dominate the agricultural landscape, where a limited understanding of nematode problems prevails. This review provides a synopsis of current nematode challenges facing SSA and presents the opportunities to overcome current shortcomings, including a means to increase nematology capacity.


Subject(s)
Crop Production , Crops, Agricultural/parasitology , Food Supply , Nematoda/physiology , Plant Diseases/prevention & control , Africa South of the Sahara , Animals , Plant Diseases/parasitology
5.
Phytopathology ; 105(3): 350-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25271352

ABSTRACT

The asexual root-knot nematodes (RKNs) (Meloidogyne spp.) exemplified by Meloidogyne incognita are widespread and damaging pests in tropical and subtropical regions worldwide. Comparison of amplification products of two adjacent polymorphic regions of the mitochondrial genome using DNA extracts of characterized RKN strains, including 15 different species, indicate that several species are derived from the same or closely related female lineages. Nevertheless, M. javanica, M. enterolobii, M. incognita, and other key species could each be assigned unique mitochondrial haplotypes based on polymerase chain reaction fragment size and restriction cleavage patterns. M. arenaria isolates did not group as a single haplotype, consistent with other reports of diversity within this species. To test the utility of this assay, we characterized ethanol-preserved samples from 103 single-species isolates from four countries in sub-Saharan Africa (Benin, Nigeria, Kenya, and Tanzania). Mitochondrial haplotypes corresponding to M. javanica and M. incognita were the most prevalent. Samples from western Africa included several instances of M. enterolobii but this species was not detected in samples from East Africa. This protocol provides progress toward a standardized strategy for identification of RKN species from small, preserved samples and a rational starting point for classifying species present in regions where previous knowledge has been limited.


Subject(s)
DNA, Mitochondrial/analysis , Tylenchida/classification , Animals , Crops, Agricultural/parasitology , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Ethanol , Haplotypes , Preservation, Biological , Tylenchida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...