Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176336

ABSTRACT

As an admixture of cement-based materials, the reaction of fly ash (FA) usually takes place in the late age of curing, so FA will affect the self-healing ability of long-age cement-based materials. The self-healing potential and the characteristics of self-healing products of cementitious materials before and after crack healing were analyzed by microscopic tests, and the mechanism of the effect of fly ash on the self-healing performance of cementitious materials was revealed. The results showed that the increase in fly ash content promoted the improvement of the self-repair performance of cracked specimens at 28 d, especially when the fly ash dosage was 40%, the crack opened after 30 d of healing in water was completely closed, the UPV value after recovery was close to 3000 m/s, the self-repair efficiency of maximum amplitude and main frequency amplitude was up to more than 60%, and the recovery rate of compressive strength was increased to more than 30%. However, the increase in fly ash content was not conducive to the self-repair of cracked samples at 210 d, and with the increase in fly ash content, the crack closure effect weakened, the UPV value after recovery decreased, the crack repair rate based on ultrasonic transmission decreased to about 20%, and the compressive strength recovery rate increased slightly. In addition, calcium carbonate precipitation was the main repair product of crack filling and healing, including calcite and spherulite. With the increase in fly ash content, the content of element C in the self-repair products of 28-day-old specimens gradually increased, and the size of calcium carbonate crystals gradually decreased, but the filling was denser, whereas the calcium carbonate crystals in the self-repair products of 210 d specimens gradually became fine and loose.

2.
Materials (Basel) ; 16(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36984161

ABSTRACT

This study investigated the effect of the interaction between ultrafine slag powder (USL) and limestone (LS) on the rheology behavior, microstructure, and fractal features of UHPC. The results indicated that B2 with mass ratio of 2:1 between the USL and LS obtained the highest compressive strength and the lowest yield stress. The combination of the USL and LS facilitated the cement hydration, ettringite, and monocarboaluminate (Mc) formation, as well as the increase in the polymerization of the C-S-H. The synergistic action between the USL and LS refined the pore structure due to the formation of the Mc, compensating for the consumption of the CH by the pozzolanic reaction, which provided a denser microstructure in the UHPC. The fractal dimension (Ds) of the UHPC was strongly related to the concrete pore structures and the compressive strength, which demonstrated that a new metric called the Ds value may be used to assess the synergistic effect of the UHPC.

3.
Materials (Basel) ; 14(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683698

ABSTRACT

Alkali-activated materials, a new kind of low-carbon cement, have received extensive attention. While in order to obtain excellent functions, the modification of alkali-activated materials by nano-materials has become one of the important research directions of alkali-activated materials. Therein, the hydration property, mechanical properties, and action mechanism of the alkali-activated slag with and without graphene oxide (GO) were analyzed and evaluated. Results showed the compressive strength of mortar decreased at 3 days and 28 days by adding GO. While the flexural strength of mortar cured for different ages increased with increasing GO content, and the flexural strength increasing rate reached up to 15.94% at 28 days, thus, the toughening effect of GO was significant. GO accelerated the hydration process of alkali-activated slag because the functional groups offered nucleation sites to induce the generation of more hydration products. Furthermore, the addition of GO increased the number of harmless pores and reduced the pore size, but also introduced a large number of harmful pores, resulting in the reduction of compressive strength.

4.
Materials (Basel) ; 14(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924001

ABSTRACT

With the construction of projects under severe environments, new and higher requirements are put forward for the properties of concrete, especially the autogenous self-sealing property, which is greatly affected by the curing environment and the state of the water. Herein, six types of curing conditions, including in air with a relative humidity of 30%, 60%, and 95%; flowing water; wet-dry cycles; and static water, are designed to investigate the autogenous self-sealing of mortar under different curing conditions. The results showed that the self-sealing ratios are higher than 60% and the cracks are closed for the mortar undergoing the wet-dry cycles and the static water. However, the self-sealing ratios of mortar are lower than 10% and the cracks are almost unchanged when the mortar is cured in the air with a relative humidity (RH) of 30% and 60%. The static liquid water is more conducive to the continued hydration of cement and the formation of CaCO3 than the flowing water. The research provides guidance for the design of concrete and the improvement of autogenous self-sealing when the concrete serves in different environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...