Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 847-857, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646773

ABSTRACT

Crop health directly affects yields and food security. At present, agrochemicals such as fertilizers and pesticides are mainly used in agricultural production to promote crop health. However, long-term excessive utilization of agrochemicals will damage the ecological environment of farmlands and increase the safety risk of agricultural products. It is urgent to explore efficient and environment-friendly agricultural products. Rhizosphere microbiome are considered as the second genome of plants, which are closely related to crop health. Understanding the key functional microbes, microbe-microbe interactions, and plant-microbe interactions are fundamental for exploring the potential of beneficial microbes in promoting crop health. However, due to the heterogeneity and complexity of the natural environment, stimulating the function of indigenous microorganisms remains uncertain. Synthetic microbial community (SynCom) is an artificial combination of two or more different strain isolates of microorganisms, with different taxonomic, genetic, or functional characteristic. Because of the advantages of maintaining species diversity and community stability, SynCom has been widely applied in the fields of human health, environmental governance and industrial production, and may also have great potential in promoting crop health. We summarized the concept and research status of SynCom, expounded the principles and methods of constructing SynCom, and analyzed the research on the promotion of crop health by exploring the mechanism of plant-microbe interactions, promoting plant growth and development, and improving stress resistance. Finally, we envisaged the future prospects to guide the using SynCom to improve crop health.


Subject(s)
Crops, Agricultural , Microbiota , Rhizosphere , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Soil Microbiology , Synthetic Biology/methods , Agriculture/methods
2.
J Cosmet Dermatol ; 23(6): 2249-2255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429917

ABSTRACT

BACKGROUND: Concentrated growth factor (CGF) injection has proven effective in treating androgenetic alopecia (AGA). The primary mechanism of CGF in treating AGA is thought to be the CD34+ stem cells and platelets-associated growth factors being injected into the scalp. CGF efficacy in treating AGA may rely on the activation level of these stem cells and platelets. The 640 nm laser is a United States Food and Drug Administration approved AGA treatment that activates follicle stem cells. Therefore, we hypothesize that pretreating CGF with a 640 nm laser may further activate CD34+ stem cells and platelets, thereby improving the efficacy of CGF in treating AGA. OBJECTIVE: This study aims to investigate whether 640 nm laser pretreated CGF (640CGF) has a greater effect in treating AGA than 640 nm laser non-pretreated CGF (N640CGF) and evaluate whether 640 nm laser pretreatment changed CD34+ cell percentage. METHODS: This study enrolled 10 patients (8 male, 2 female) with AGA aged 18-60 years who received CGF injections. The 640CGF group was pretreated with a 640 nm laser at an energy density of 4 J/cm2, with a 30 cm irradiation distance for 30 min. Half of the scalp was treated with 640CGF, whereas the other half was treated with N640CGF. The injection was prepared by a doctor who did not know which blood tube had been pretreated. The treatment efficacy was evaluated using a trichoscope 1 month after injection. RESULTS: All 10 (100%) patients participated in the follow-up visit, and a higher quantity of new hairs was observed on the side injected with 640CGF than N640CGF (p = 0.019). Additionally, fewer malnourished hairs were observed on the 640CGF pretreated side (p = 0.015). No serious adverse events were reported. CONCLUSIONS: A higher percentage of CD34+ stem cells and improved efficacy in AGA treatment could be observed with CGF prepared from 640 nm laser-pretreated blood.


Subject(s)
Alopecia , Antigens, CD34 , Hair Follicle , Intercellular Signaling Peptides and Proteins , Humans , Alopecia/therapy , Antigens, CD34/metabolism , Adult , Female , Middle Aged , Male , Young Adult , Intercellular Signaling Peptides and Proteins/administration & dosage , Treatment Outcome , Stem Cells/drug effects , Adolescent , Scalp , Low-Level Light Therapy/methods , Low-Level Light Therapy/adverse effects , Low-Level Light Therapy/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL