Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 569: 219-228, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32113019

ABSTRACT

HYPOTHESIS: The current mechanism of surfactant enhanced oil recovery (EOR) mainly relies on forming middle-phase microemulsions to get ultra-low oil-water interfacial tension. However, residual oil can also be recovered using low concentration surfactant solutions without microemulsion formation, and the interaction between the surfactant solution and crude oil at very early contact has not been studied yet. We hypothesize micelle solubilization of oil as an alternative EOR mechanism. EXPERIMENTS: Sodium dodecylbenzenesulfonate (SDBS), anisole and 1-hexene were used as a model surfactant and model polar and nonpolar compounds in crude oil, respectively. The interaction between SDBS micelles and these two additives was investigated with dynamic light scattering, UV-Vis spectroscopy, 1H NMR spectroscopy, cryogenic transmission electron microscopy, confocal microscope and small angle neutron scattering. FINDINGS: SDBS micelles become larger upon increasing additive concentration to transfer into swollen micelles. 1-Hexene is localized in the micelle core, and retains the spherical micelle shape, while anisole resides in the palisade layer and weakens the electrostatic repulsions among surfactant headgroups, inducing a sphere-rod transition. No emulsion droplets were observed for 0.2 wt% SDBS solution until 1.5 wt% anisole or 1-hexene was introduced. These findings help understanding the role surfactant micelles in EOR and propose a new mechanism for surfactant EOR processes.

2.
Molecules ; 24(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779282

ABSTRACT

Alkylaryl sulfonate is a typical family of surfactants used for chemically enhanced oil recovery (EOR). While it has been widely used in surfactant-polymer flooding at Karamay Oilfield (40 °C, salinity 14,000 mg/L), its aggregation behavior in aqueous solutions and the contribution of aggregation to EOR have not been investigated so far. In this study, raw naphthenic arylsulfonate (NAS) and its purified derivatives, alkylaryl monosulfonate (AMS) and alkylaryl disulfonate (ADS), were examined under simulated temperature and salinity environment of Karamay reservoirs for their micellar aggregation behavior through measuring surface tension, micellar size, and micellar aggregation number. It was found that all three alkylaryl sulfonate surfactants could significantly lower the surface tension of their aqueous solutions. Also, it has been noted that an elevation both in temperature and salinity reduced the surface tension and critical micellar concentration. The results promote understanding of the performance of NAS and screening surfactants in EOR.


Subject(s)
Alkanesulfonates/chemistry , Oils/chemistry , Surface-Active Agents/chemistry , Micelles , Surface Tension , Temperature , Water/chemistry
3.
J Colloid Interface Sci ; 375(1): 148-53, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22424764

ABSTRACT

In this article, the validity and accuracy of the free energy perturbation (FEP) model used in a previous article for ionic liquid-type Gemini imidazolium surfactants (ILGISs) is further evaluated by using it to model the Enthalpy-entropy compensation of Sulfobetaine-type Zwitterionic Gemini Surfactants (SZGSs), with different carbon atoms of the hydrophobic group or the spacer chain length, in aqueous solutions. In the FEP model, the Gibbs free energy contributions to the driving force for micelle formation are computed using hydration data obtained from molecular dynamics simulations. According to the pseudo-phase separation model, the thermodynamic properties of micellization in aqueous solutions for SZGS were discussed. The results show that the micellization of SZGS in aqueous solutions is a spontaneous and entropy-driven process. It is linearly Enthalpy-entropy compensated and different from the micelle formation of ILGIS but similar to anionic surfactants. The compensation temperature was found to be (302±3)K which was lower than ILGIS. As the temperature rises, the micellization is easy initially but then becomes difficult with the unusual changes of enthalpy values from positive to negative. The contribution of entropy change to the micellization tends to decrease but the contribution of enthalpy change tends to increase. In particular, as the number carbon atoms in the alkyl chains and spacer chains are increased, the thermodynamic favorability and stability of the micelles both increase.

SELECTION OF CITATIONS
SEARCH DETAIL
...