Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Hazard Mater ; 459: 132222, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37557043

ABSTRACT

We simultaneously assessed the associations for a range of outdoor environmental exposures with prevalent tuberculosis (TB) cases in a population-based health program with 1940,622 participants ≥ 15 years of age. TB status was confirmed through bacteriological and clinical assessment. We measured 14 outdoor environmental exposures at residential addresses. An exposome-wide association study (ExWAS) approach was used to estimate cross-sectional associations between environmental exposures and prevalent TB, an adaptive elastic net model (AENET) was implemented to select important exposure(s), and the Extreme Gradient Boosting algorithm was subsequently applied to assess their relative importance. In ExWAS analysis, 12 exposures were significantly associated with prevalent TB. Eight of the exposures were selected as predictors by the AENET model: particulate matter ≤ 2.5 µm (odds ratio [OR]=1.01, p = 0.3295), nitrogen dioxide (OR=1.09, p < 0.0001), carbon monoxide (OR=1.19, p < 0.0001), and wind speed (OR=1.08, p < 0.0001) were positively associated with the odds of prevalent TB while sulfur dioxide (OR=0.95, p = 0.0017), altitude (OR=0.97, p < 0.0001), artificial light at night (OR=0.98, p = 0.0001), and proportion of forests, shrublands, and grasslands (OR=0.95, p < 0.0001) were negatively associated with the odds of prevalent TB. Air pollutants had higher relative importance than meteorological and geographical factors, and the outdoor environment collectively explained 11% of TB prevalence.


Subject(s)
Air Pollutants , Air Pollution , Exposome , Tuberculosis , Humans , Adult , Cross-Sectional Studies , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Exposure/analysis , Tuberculosis/epidemiology , Particulate Matter/analysis , China/epidemiology , Air Pollution/analysis
3.
Front Public Health ; 10: 881234, 2022.
Article in English | MEDLINE | ID: mdl-35602136

ABSTRACT

Objective: Based on the respiratory disease big data platform in southern Xinjiang, we established a model that predicted and diagnosed chronic obstructive pulmonary disease, bronchiectasis, pulmonary embolism and pulmonary tuberculosis, and provided assistance for primary physicians. Methods: The method combined convolutional neural network (CNN) and long-short-term memory network (LSTM) for prediction and diagnosis of respiratory diseases. We collected the medical records of inpatients in the respiratory department, including: chief complaint, history of present illness, and chest computed tomography. Pre-processing of clinical records with "jieba" word segmentation module, and the Bidirectional Encoder Representation from Transformers (BERT) model was used to perform word vectorization on the text. The partial and total information of the fused feature set was encoded by convolutional layers, while LSTM layers decoded the encoded information. Results: The precisions of traditional machine-learning, deep-learning methods and our proposed method were 0.6, 0.81, 0.89, and F1 scores were 0.6, 0.81, 0.88, respectively. Conclusion: Compared with traditional machine learning and deep-learning methods that our proposed method had a significantly higher performance, and provided precise identification of respiratory disease.


Subject(s)
Memory, Short-Term , Neural Networks, Computer , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...