Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109578, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38638573

ABSTRACT

In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 µmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.

2.
Nanoscale ; 13(13): 6521-6530, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33885531

ABSTRACT

Oxygen reduction reaction (ORR) catalytic activity can be improved by means of enhancing the synergy between transition metals. In this work, a novel porous Fe-N4-C nanostructure containing uniformly dispersed Co nanoparticles (CoNPs) is prepared by an assisted thermal loading method. The as-prepared Co@Fe-N-C catalyst shows enhanced ORR activity with a half-wave potential (E1/2) of 0.92 V vs. RHE, which is much higher than those of the direct pyrolysis CoNP-free sample Fe-N-C (E1/2 = 0.85 V) and Pt/C (E1/2 = 0.90 V) in alkaline media. It exhibits remarkable stability with only a 10 mV decrease in E1/2 after 10 000 cycles and an outstanding long-term durability with 85% current remaining after 60 000 s. In acidic media, this catalyst exhibits catalytic activity with an E1/2 of 0.79 V, comparable to Pt/C (E1/2 = 0.82 V). X-ray absorption fine spectroscopy analysis revealed the presence of active centres of Fe-N4. Density functional theory calculations confirmed the strong synergy between CoNPs and Fe-N4 sites, providing a lower overpotential and beneficial electronic structure and a local coordination environment for the ORR. The incorporation of CoNPs on the surface of Fe-N4-C nanomaterials plays a key role in enhancing the ORR catalytic activity and stability, providing a new route to prepare efficient Pt-free ORR catalysts.

3.
Nanoscale ; 11(28): 13450-13457, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31287481

ABSTRACT

Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these nanomaterials. Here we report stable CsPbI3 perovskite NCs and their use in hybrid light emitting diodes (LEDs), which combine in one system the NCs and a blue GaN-based LED. Nanocrystals with improved morphological and optical properties are obtained by optimizing the post-synthesis replacement of oleic acid ligands with iminodibenzoic acid: the NCs have a long shelf-life (>2 months), stability under different environmental conditions, and a high QY, of up to 90%, in the visible spectral range. Ligand replacement enables the engineering of the morphological and optical properties of the NCs. Furthermore, the NCs can be used to coat the surface of a GaN-LED to realize a stable diode where they are excited by blue light from the LED under low current injection conditions, resulting in emissions at distinct wavelengths in the visible range. The high QY and fluorescence lifetime in the nanosecond range are key parameters for visible light communication, an emerging technology that requires high-performance visible light sources for secure, fast energy-efficient wireless transmission.

4.
Nanotechnology ; 30(14): 145602, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30630155

ABSTRACT

Cesium lead halide perovskite nanocrystals are photoelectric nanomaterials that have potential applications in a variety of areas due to their excellent photoelectric and tunable photo luminescent properties. In this work, we investigate the synergetic effects of reaction temperature, reaction-capillary length and flow rate on the growth kinetics of perovskite nanocrystals in a PTFE-based microsystem and the photoluminescence characteristics of the perovskite nanocrystals both on-line and off-line. The on-line measurement finds that increasing the reaction temperature leads to the increase of the wavelength of the PL emission peak of the synthesized nanocrystals and reduces the average size of the perovskite nanocrystals synthesized in long reaction-capillaries. The intensity of the PL emission peak of the nanocrystals synthesized at different reaction temperatures decreases with the increase of the flow rate. The off-line measurement reveals that increasing the flow rate generally leads to the blueshift of the PL emission peaks and the decrease of the average size of the perovskite nanocrystals synthesized at the reaction temperature of 160 °C in the capillary length of 60 cm. Increasing temperature leads to the increase of the emission wavelength of the perovskite nanocrystals from 560 to 608 nm. The temperature dependence of the average size of the synthesized nanocrystals with the same synthesis conditions at different temperatures can be described by the Arrhenius relationship with an activation energy of 8.54 kJ mol-1. Five different cross-sections of the synthesized perovskite nanocrystals are observed, including rhombus, hexagon, rectangle, square and quadrangle with three of them being observed for the first time.

5.
Beilstein J Nanotechnol ; 8: 2521-2529, 2017.
Article in English | MEDLINE | ID: mdl-29259867

ABSTRACT

Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

6.
Soft Matter ; 12(40): 8285-8296, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27714345

ABSTRACT

The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.

7.
Appl Opt ; 54(21): 6498-501, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26367834

ABSTRACT

A visualization method for monitoring minor metal crack propagation is presented in this paper. Through CdS@ZnS core-shell quantum dots (QDs) enhanced emission of photoluminescence (PL), this crack detection method provides a visualization signal in real time and through a noncontact fashion. The crack of the CdS@ZnS core-shell QDs-epoxy resin kept a synchronous propagation with the metal crack. Detection of the tip growth in the film layers demonstrated that the actual crack propagation on the metal surface could be deduced from the tips in the film layers. The fluorescence peak tended to increase along the crack from the initial opening to the tip. Crack width as small as 10 µm can be detected with a precision of 0.1 µm and the minimum crack tip width of the QDs-epoxy resin was measured as 0.72 µm.

8.
Dalton Trans ; 41(39): 12254-8, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22930154

ABSTRACT

The shape controlled synthesis of high quality colloidal lead selenide (PbSe) nanocrystals (NCs) was achieved through a simple solvothermal process. By using oleic acid (OA) as a ligand and activating agent for the Pb precursor, the evolution of the NCs from nanospheres to nanoflowers and finally to nanocubes was achieved by increasing the reaction time. Further, the shape variation from nanospheres to polyhedrons was readily realized through the increase of OA concentration in the stock solution. More interestingly, the change of the anion ligand was proven to be a facile method to control the structure and size of the nanoflowers. The X-ray diffraction and TEM analysis demonstrated the cubic rock salt structure of the synthesized PbSe NCs. Accompanied by comprehensive analytics, the discussion on the possible mechanisms for the shape evolution was provided.

9.
Nanoscale Res Lett ; 7(1): 225, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22513005

ABSTRACT

A capillary micro-reaction was established for the synthesis of Au-Ag alloy nanoparticles (NPs) with a flexible and controllable composition and grain size by tuning the synthesis temperature, the residence time, or the mole ratio of Au3+:Ag+. By extending the residence time from 5 to 900 s, enhancing the temperature from 120°C to 160°C, or decreasing the mole ratio of Au3+:Ag+ from 1:1 to 1:20, the composition of samples was changed continuously from Au-rich to Ag-rich. The particles became large with the increase of the residence time; however, synthesis temperatures showed less effect on the particle size change. The particle size of the Au-Ag alloy NPs with various composition could be kept by adjusting the mole ratio of Au3+:Ag+. TEM observation displayed that the as-obtained NPs were sphere-like with the smallest average size of 4.0 nm, which is half of those obtained by the traditional flask method.

10.
Dalton Trans ; 41(3): 772-6, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22071435

ABSTRACT

In this paper, for the first time a simple batch process was utilized for the facile synthesis of cubic FeS(2) and flower-like FeSe(2). By adjusting the amount of solvents and surfactants added, pure pyrite FeS(2) with a defined crystalline structure was obtained. It was found that the reaction temperatures and iron sources had significant influence on the purities and morphologies of FeS(2) and FeSe(2) particles. Raman spectra of the FeS(2) and FeSe(2) samples presented characteristic peaks of S-S and Se-Se active modes at 337, 372 cm(-1), and 180, 217, 254 cm(-1), respectively. The absorption properties of the FeS(2) and FeSe(2) samples were also investigated and the results demonstrated that these samples had broad optical absorption in NIR. Moreover, the synthetic approach demonstrated here may be of great potential for the controlled synthesis of other metal chalcogenides.

11.
Nanotechnology ; 22(26): 265609, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576797

ABSTRACT

Luminescent lanthanide nanocrystals (NCs) are proposed to be a promising new class of fluorescent labeling agents due to their attractive optical and chemical features including low toxicity, wide photoluminescence (PL) emission and high resistance to photobleaching. In this paper, an ionic-liquid-induced synthesis of Ce(1 - x)Tb(x)F(3) nanoparticle was investigated via utilizing a capillary microreactor. Ionic liquid-[bmim]BF(4) acts as both a fluoride source and stabilizing solvent during the reaction, which was shown to be a key factor that governs luminescence intensity of the obtained nanoparticles. The luminescent properties can be greatly improved by optimizing the volume percentage of [bmim]BF(4). Furthermore, the reaction temperature exerts an influence on the properties of the prepared samples. Experimental results show that the colloidal solutions of Tb(3+)-doped CeF(3) NCs exhibit the characteristic emission of Ce(3+) 5d-4f and Tb(3 + 5) D(4)-(7)F(J) (J = 6-3) transitions with (5)D(4)-(7)F(5) green emission at 542 nm as the strongest peak. The as-prepared samples are found dispersible in water with the quantum yield (in aqueous solution) as 12%, which indicates a potential application on biolabels, light-emitting diodes (LEDs) and redox luminescent switches.

12.
J Colloid Interface Sci ; 356(1): 78-85, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21288534

ABSTRACT

A capillary microreactor was firstly utilized to continuously synthesize near-infrared emitting CdSe(x)Te(1-)(x) nanocrystals (NCs). By using trioctylphosphine oxide and trioctylphosphine as the solvents for anion precursor as well as oleic acid and oleylamine as the solvents for cation precursor, high quantum yield zinc-blend CdSe(x)Te(1-)(x) NCs with a chemical composition gradient internal structure and tunable emission from 634 to 783 nm were synthesized. Thus, the nonlinear relationship between the composition and the emission energies were verified. Moreover, a facile single-step capping approach was developed by using the dissolution of cadmium oxide and free element sulfur in oleic acid, and a very thin CdS shell was successfully epitaxial grown around the as-prepared CdSe(x)Te(1-)(x) NCs to enhance the photostability. After the capping process, the core/shell structured CdSe(x)Te(1-)(x)/CdS NCs remained 15-40% of their initial PL intensity after 3h of illumination.

13.
Nanoscale Res Lett ; 4(4): 344-52, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-20596469

ABSTRACT

Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs) in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL) efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM) of PL (26 nm). Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.%) of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585) was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26-31 nm) and high QY of PL (35-55%).

14.
Nanoscale Res Lett ; 5(1): 130-137, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-20651917

ABSTRACT

CdS-based nanocrystals (NCs) have attracted extensive interest due to their potential application as key luminescent materials for blue and white LEDs. In this research, the continuous synthesis of monodisperse CdS NCs was demonstrated utilizing a capillary microreactor. The enhanced heat and mass transfer in the microreactor was useful to reduce the reaction temperature and residence time to synthesize monodisperse CdS NCs. The superior stability of the microreactor and its continuous operation allowed the investigation of synthesis parameters with high efficiency. Reaction temperature was found to be a key parameter for balancing the reactivity of CdS precursors, while residence time was shown to be an important factor that governs the size and size distribution of the CdS NCs. Furthermore, variation of OA concentration was demonstrated to be a facile tuning mechanism for controlling the size of the CdS NCs. The variation of the volume percentage of OA from 10.5 to 51.2% and the variation of the residence time from 17 to 136 s facilitated the synthesis of monodisperse CdS NCs in the size range of 3.0-5.4 nm, and the NCs produced photoluminescent emissions in the range of 391-463 nm.

15.
Lab Chip ; 8(3): 451-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18305864

ABSTRACT

By utilizing the symmetrical temperature distribution in a tube furnace chamber, a capillary microreactor was designed with the microchannel passing two well-controlled, stable temperatures in steep temperature gradients. The two-temperature microreator, first developed and implemented by this research team, provides an opportunity to separate the nucleation and growth of semiconductor nanocrystals, leading to better control of nucleation and growth kinetics. For the synthesis of CdSe nanocrystals as a model system, we demonstrated the improved size uniformity achieved by the two-temperature approach, confirming the success of the use of high temperature to burst nucleation and low temperature to promote growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...