Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 275: 116624, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925015

ABSTRACT

With the intensive research on the pathogenesis of Alzheimer's disease (AD), inhibition of HDAC6 appears to be a potential therapeutic approach for AD. In this paper, a series of tetrahydro-ß-carboline derivatives with hydroxamic acid group were fast synthesized. Among all, the most potent 15 selectively inhibited HDAC6 with IC50 of 15.2 nM and markedly increased acetylated alpha-tubulin levels. In cellular assay, 15 showed excellent neurotrophic effect by increasing the expression of GAP43 and Beta-3 tubulin markers. Besides, 15 showed neuroprotective effects in PC12 or SH-SY5Y cells against H2O2 and 6-OHDA injury through activation of Nrf2, catalase and Prx II, and significantly reduced H2O2-induced reactive oxygen species (ROS) production. In vivo, 15 significantly attenuated zebrafish anxiety-like behaviour and memory deficits in a SCOP-induced zebrafish model of AD. To sum up, multifunctional 15 might be a good lead to develop novel tetrahydrocarboline-based agents for the treatment of AD.

2.
Eur J Med Chem ; 260: 115776, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37660484

ABSTRACT

A series of tetrahydro-ß-carboline (THßC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THßC analogues were highly potent (IC50 < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR). Target engagement of HDAC6 was confirmed in RPMI-8226 cells using the WB assay. In vitro, (1S, 3R)-1-(4-chlorophenyl)-N-(4-(hydroxycarbamoyl)benzyl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxamide (14g) showed potent broad antiproliferative activity against various tumors including leukemia, colon cancer, melanoma, and breast cancer cell lines, better than ACY-1215. Moreover, 14g also showed good pharmacokinetics properties in mice via oral administration.


Subject(s)
Carbolines , Humans , Animals , Mice , Histone Deacetylase 6 , Molecular Docking Simulation , Administration, Oral , Carbolines/pharmacology
3.
Bioorg Med Chem Lett ; 81: 129148, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36690041

ABSTRACT

Novel indole-piperazine derivatives with a hydroxamic acid moiety were designed and synthesized as selective histone deacetylase 6 (HDAC6) inhibitors. In enzymatic assays, all compounds exhibited nanomolar IC50 values. N-hydroxy-4-((4-(7-methyl-1H-indole-3-carbonyl)piperazin-1-yl)methyl)benzamide, 9c, was the most potent HDAC6 inhibitor (IC50, 13.6 nM). In vitro, 9c induced neurite outgrowth of PC12 cells without producing toxic effects, better than Tubastatin A (Tub A). Additionally, 9c demonstrated blatant neuroprotective activity in PC12 cells against H2O2-induced oxidative damage. In western blot assay, 9c could increase the acetylation of α-tubulin in a dose-dependent manner.


Subject(s)
Histone Deacetylases , Hydrogen Peroxide , Rats , Animals , Histone Deacetylase 6 , Piperazine , Histone Deacetylase Inhibitors/pharmacology , Indoles/pharmacology , Neuronal Outgrowth , Hydroxamic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...