Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(21): 10262-10272, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38716577

ABSTRACT

The generation of stable white light emission using lead-free perovskites remains a huge challenge in the development of future display and lighting technologies, due to fast material deterioration and the decrease of the color quality. In this work, we report a combination of diverse types of 2D A2SnX4 (A = bulky cation, X = Br, I) perovskites exhibiting self-trapped exciton (STE) emission and blue luminescent carbon quantum dots (CQDs), with the purpose of generating A2SnX4/CQD inks with a broadband emission in the visible region and a tunable white light color. By varying the concentration of the 2D perovskite, the white emission of the mixtures is modulated to cool, neutral, and warm tonalities, with a PL quantum yield up to 45%. From the combinations, the PEA2SnI4/CQD-based ink shows the longest stability, due to suitable surface ligand passivation provided by the capping ligands covering the CQDs, compensating the defect sites in the perovskite. Then, by incorporating the PEA2SnI4/CQDs inks into an acrylate polymer matrix, the quenching of the PL component from the perovskite was restrained, being stable for >400 h under ambient conditions and at a relative humidity of ∼50%, and allowing the preparation of complex 3D-printed composites with stable white emission tonalities. This contribution offers an application of STE-based Sn-perovskites to facilitate the future fabrication of lead-free white-light optoelectronic devices.

2.
J Colloid Interface Sci ; 641: 595-609, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963253

ABSTRACT

HYPOTHESIS: The development of solid-solution photocatalysts with tunable bandgaps and band structures, which are significant factors that influence their photocatalytic properties, is crucial. EXPERIMENTS: We fabricated a series of novel bismuth-rich Bi7O9I3-Bi4O5Br2 solid-solution photocatalysts with controlled I:Br molar ratios (denoted as B-IxBr1-x, x  = 0.2, 0.3, 0.4, or 0.6) via a rapid, facile, and energy-efficient microwave-heating route. The photodegradations under visible-light irradiation of the phenolic compounds (4-nitrophenol (4NP), 3-nitrophenol (3NP), and bisphenol A (BPA)), and the simultaneous photodegradation of BPA and rhodamine B (RhB) in a coexisting BPA - RhB system were investigated. FINDINGS: The B-I0.3Br0.7 solid solution provided the highest photocatalytic activity toward 4NP degradation, with degradation rates 32 and 4 times higher than those of Bi7O9I3 and Bi4O5Br2, respectively. The photodegradation efficiency of the studied phenolic compounds followed the order BPA (97.5%) > 4NP (72.8%) > 3NP (27.5%). The RhB-sensitization mechanism significantly enhanced the photodegradation efficiency of BPA. Electrochemical measurements demonstrated the efficient separation and migration of charge carriers in the B-I0.3Br0.7 solid solution, which enhanced the photocatalytic activity. The B-I0.3Br0.7 solid solution effectively activated molecular oxygen to produce •O2-, which subsequently produced other reactive species, including H2O2 and •OH, as revealed by reactive-species trapping, nitroblue tetrazolium transformation, and o-tolidine oxidation experiments.

3.
J Colloid Interface Sci ; 603: 738-757, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34229117

ABSTRACT

HYPOTHESIS: Fabrication of the heterojunction photocatalyst with appropriate band potentials as a promising method of inhibiting electron-hole pair recombination leading to enhanced photocatalytic properties. EXPERIMENTS: Herein, BiOBr, Bi4O5Br2, and binary BiOBr/Bi4O5Br2 composite were selectively synthesized by employing a one-step microwave irradiation method. Then, double Z-scheme FeVO4/Bi4O5Br2/BiOBr ternary composites with different weight percentages (%wt) of FeVO4 were fabricated and their photocatalytic applications were studied. The photodegradation of organic compounds (rhodamine B (RhB), methylene blue (MB) and salicylic acid (SA)), along with the photoreduction of hexavalent chromium (Cr(VI)) were investigated. FINDINGS: Comparing with the single and binary photocatalysts, and a commercial TiO2, the 1 %wt-FeVO4/Bi4O5Br2/BiOBr photocatalyst demonstrated superior visible-light-driven photocatalytic performance. In a Cr(VI)/RhB combined system, Cr(VI) photoreduction was further improved and coexisting RhB molecules were simultaneously degraded. Removal of Cr(VI) and RhB were maximized by adjusting both pH values and catalyst dosages. Based on UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical investigations, active-species trapping, nitrotetrazolium blue transformation, and silver photo-deposition experiments, a double Z-scheme charge transfer mechanism with an RhB-sensitized effect was proposed. This special mechanism has led to significant enhancement in charge segregation and migration, along with higher redox properties of the ternary composite, which were responsible for the excellent photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...