Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 50(5): e5858, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28380195

ABSTRACT

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in ß-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, ß-cell hypersecretion, a higher percentage of islets and ß-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.


Subject(s)
Duodenum/surgery , Fatty Liver/metabolism , Gastric Bypass/methods , Hypothalamic Diseases/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Jejunum/surgery , Obesity/metabolism , Animals , Animals, Newborn , Blood Glucose/metabolism , Cell Proliferation , Cholesterol/blood , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/blood , Fatty Liver/physiopathology , Hypothalamic Diseases/physiopathology , Hypothalamic Diseases/surgery , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Islets of Langerhans/physiopathology , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Male , Obesity/physiopathology , Obesity/surgery , Pancreas/metabolism , Pancreas/pathology , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Triglycerides/blood
2.
Braz. j. med. biol. res ; 50(5): e5858, 2017. tab, graf
Article in English | LILACS | ID: biblio-839295

ABSTRACT

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in β-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, β-cell hypersecretion, a higher percentage of islets and β-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.


Subject(s)
Animals , Male , Duodenum/surgery , Fatty Liver/metabolism , Gastric Bypass/methods , Hypothalamic Diseases/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Jejunum/surgery , Obesity/metabolism , Animals, Newborn , Blood Glucose/metabolism , Cell Proliferation , Cholesterol/blood , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/blood , Fatty Liver/physiopathology , Hypothalamic Diseases/physiopathology , Hypothalamic Diseases/surgery , Insulin Resistance , Insulin/metabolism , Islets of Langerhans/physiopathology , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Obesity/physiopathology , Obesity/surgery , Pancreas/metabolism , Pancreas/pathology , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Triglycerides/blood
3.
Braz. j. med. biol. res ; 48(5): 447-457, 05/2015. tab, graf
Article in English | LILACS | ID: lil-744369

ABSTRACT

The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Health Knowledge, Attitudes, Practice , Smoking Cessation/methods , Smoking/prevention & control , Substance-Related Disorders/rehabilitation , Ambulatory Care/methods , Opiate Substitution Treatment/methods , Opioid-Related Disorders/rehabilitation , Self Report , Smoking Cessation/psychology , Smoking/epidemiology , Smoking/psychology , Tobacco Use Disorder/rehabilitation
4.
Braz J Med Biol Res ; 48(5): 447-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25714886

ABSTRACT

The parasympathetic nervous system is important for ß-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic ß-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and ß-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and ß-cell area/pancreas section, respectively. Also, the ß-cell number per ß-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater ß-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.


Subject(s)
Homeostasis/physiology , Hyperinsulinism/physiopathology , Insulin/metabolism , Islets of Langerhans , Obesity/physiopathology , Vagotomy , Animals , Carbachol/pharmacology , Cell Count , Cholesterol/analysis , Cholinergic Agonists/pharmacology , Flavoring Agents/pharmacology , Glucose/metabolism , Insulin Resistance/physiology , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/innervation , Islets of Langerhans/metabolism , Islets of Langerhans/physiopathology , Male , Obesity/chemically induced , Pancreas/pathology , Rats, Wistar , Sodium Glutamate/pharmacology , Triglycerides/analysis , Vagus Nerve/physiology
5.
Physiol Behav ; 119: 1-8, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23727535

ABSTRACT

Besides the well-known detrimental effects of obesity on cardiovascular and metabolic function, studies have shown that obesity is also associated with impaired reproductive function in women. Alterations in Angiotensin II (Ang II) have been associated with obesity and with female reproduction. The aim of the present study was to evaluate the reproductive and metabolic effects of Ang II AT1 receptor blockade with losartan in an animal model of obesity, in which female rats were offered a palatable, high calorie diet from weaning to adulthood. Sexual behavior, ovulation rates and preovulatory levels of the hormones estradiol, progesterone, LH and prolactin were analyzed. Retroperitoneal and perigonadal fat pads, triglycerides and cholesterol (total, HDL and LDL), and insulin resistance were analyzed. Losartan prevented increases in fat pad storage, insulin resistance, as well as triglycerides and LDL levels induced by cafeteria diet intake. Losartan also prevented ovulatory deficits and loss of preovulatory surges of progesterone and LH in cafeteria-fed female rats probably through the prevention of the increase in body weight and body fat. No alterations in sexual behavior were observed. These results suggest, for the first time, that Ang II contributes to the development of the deleterious effects of obesity on preovulatory surges of LH and progesterone and on the reduction of ovulation in obese female rats.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Diet, High-Fat/adverse effects , Losartan/therapeutic use , Metabolic Diseases/prevention & control , Sexual Dysfunctions, Psychological/prevention & control , Adipose Tissue , Angiotensin Receptor Antagonists/pharmacology , Animals , Body Weight/drug effects , Cholesterol/blood , Estradiol/blood , Female , Insulin Resistance , Losartan/pharmacology , Luteinizing Hormone/blood , Metabolic Diseases/complications , Obesity/chemically induced , Obesity/complications , Obesity/prevention & control , Progesterone/blood , Prolactin/blood , Rats , Sexual Dysfunctions, Psychological/complications , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...