Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1848, 2017.
Article in English | MEDLINE | ID: mdl-29118778

ABSTRACT

The molecular genetic basis of cotton fiber strength and fineness in crosses between Gossypium mustelinum and Gossypium hirsutum (Upland cotton) was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. The BC3F2 families were genotyped with simple sequence repeat markers from a G. hirsutum by G. mustelinum linkage map, and the three generations of BC3-derived families were phenotyped for fiber strength (STR) and fineness (Micronaire, MIC). A total of 42 quantitative trait loci (QTLs) were identified through one-way analysis of variance, including 15 QTLs for STR and 27 for MIC, with the percentage of variance explained by individual loci averaging 13.86 and 14.06%, respectively. Eighteen of the 42 QTLs were detected at least twice near the same markers in different generations/families or near linked markers in the same family, and 28 of the 42 QTLs were identified in both mixed model-based composite interval mapping and one-way variance analyses. Alleles from G. mustelinum increased STR for eight of 15 and reduced MIC for 15 of 27 QTLs. Significant among-family genotypic effects (P < 0.001) were detected in 13 and 10 loci for STR and MIC respectively, and five loci showed significant (P < 0.001) genotype × family interaction for MIC. These results support the hypothesis that fiber quality improvement for Upland cotton could be realized by introgressing G. mustelinum alleles although complexities due to the different effects of genetic background on introgressed chromatin might be faced. Building on prior work with G. barbadense, G. tomentosum, and G. darwinii, QTL mapping involving introgression of G. mustelinum alleles offers new allelic variation to Upland cotton germplasm.

2.
Theor Appl Genet ; 130(10): 2219-2230, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28801756

ABSTRACT

KEY MESSAGE: This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.


Subject(s)
Chromatin/genetics , Gossypium/genetics , Plant Breeding , Alleles , Chromosome Segregation , Crosses, Genetic , Genetic Linkage , Genetic Markers , Genetic Variation , Genome, Plant , Gossypium/classification , Tetraploidy
3.
Theor Appl Genet ; 130(6): 1297-1308, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28349176

ABSTRACT

KEY MESSAGE: QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.


Subject(s)
Cotton Fiber , Crosses, Genetic , Gossypium/genetics , Quantitative Trait Loci , Alleles , Chromosome Mapping , Epistasis, Genetic , Genetic Markers , Genotype , Microsatellite Repeats , Phenotype , Plant Breeding
4.
Theor Appl Genet ; 121(8): 1623-31, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20680610

ABSTRACT

The identification and utilization of a high-level of host plant resistance is the most effective and economical approach to control root-knot nematode (Meloidogyne incognita). In an earlier study, we identified a major quantitative trait locus (QTL) for resistance to root-knot nematode in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. The QTL is located in a 12.9-cM interval flanked by the two SSR markers CIR069 and CIR316 on the distal segment of chromosome 11. To construct a fine map around the target region, a bulked segregation analysis was performed using two DNA pools consisting of five individuals, with each being homozygous for the two parental alleles. From a survey of 1,152 AFLP primer combinations, 9 AFLP markers closely linked to the target region were identified. By screening an additional 1,221 F(2) individuals developed from the initial mapping population, the Mi-C11 locus was delimited to a 3.6-cM interval flanked by the SSR marker CIR069 and the AFLP marker E14M27-375. These results further elucidate the genetic fine structure of the Mi-C11 locus and provide the basis for map-based isolation of the nematode resistance gene in M-120 RNR.


Subject(s)
Gossypium/genetics , Immunity, Innate/genetics , Nematoda/physiology , Physical Chromosome Mapping/methods , Plant Diseases/immunology , Plant Roots/parasitology , Quantitative Trait Loci/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Genes, Plant/genetics , Genetic Markers , Gossypium/immunology , Gossypium/parasitology , Plant Diseases/genetics , Plant Diseases/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL