Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Immunol ; 15: 1343484, 2024.
Article in English | MEDLINE | ID: mdl-38318180

ABSTRACT

Background: Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods: High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results: Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion: High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Leukocytes, Mononuclear/pathology , CD4-Positive T-Lymphocytes , Immunotherapy/methods , Dexamethasone/therapeutic use
2.
J Allergy Clin Immunol Glob ; 3(1): 100193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38187864

ABSTRACT

Background: House dust mite extract-based allergen immunotherapy (AIT) to treat house dust mite allergy is substantially effective but still presents some safety and efficacy concerns that warrant improvement. Several major allergen-based approaches to increase safety and efficacy of AIT have been proposed. One of them is the use of the group 2 allergen, Der p 2. Objective: We sought to investigate the immunomodulatory effects of sialic acid-modified major allergen recombinant Der p 2 (sia-rDer p 2) on PBMCs from healthy volunteers. Methods: We activated PBMCs with anti-CD3/CD28 antibodies and incubated them at 37°C for 6 days in the presence or absence of either native rDer p 2 or α2-3 sialic acid-modified rDer p 2 (sia-rDer p 2). We assessed the changes in CD4+ T-cell activation and proliferation by flow cytometry and changes in T-lymphocyte cytokine production in cell culture supernatant by ELISA. Results: We observed that PBMCs treated with sia-rDer p 2 presented with a markedly decreased expression of CD69 and an increased abundance of LAG-3+ lymphocytes compared with cells treated with rDer p 2. Moreover, PBMCs treated with sia-rDer p 2 showed a reduced production of IL-4, IL-13, and IL-5 and displayed a higher IL-10/IL-5 ratio compared with rDer p 2-treated PBMCs. Conclusions: We demonstrate that sia-rDer p 2 might be a safer option than native rDer p 2 for Der p 2-specific AIT. This is most relevant in the early phase of AIT that is often characterized by heightened TH2 responses, because sia-rDer p 2 does not enhance the production of TH2 cytokines.

3.
Cancers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454831

ABSTRACT

Identification of human cancer-reactive CD8+ T cells is crucial for the stratification of patients for immunotherapy and determination of immune-therapeutic effects. To date, these T cells have been identified mainly based on cell surface expression of programmed cell death protein 1 (PD-1) or co-expression of CD103 and CD39. A small subset of CD103- CD39+ CD8+ T cells is also present in tumors, but little is known about these T cells. Here, we report that CD103- CD39+ CD8+ T cells from mismatch repair-deficient endometrial tumors are activated and characterized predominantly by expression of TNFRSF9. In vitro, transforming growth factor-beta (TGF-ß) drives the disappearance of this subset, likely through the conversion of CD103- CD39+ cells to a CD103+ phenotype. On the transcriptomic level, T cell activation and induction of CD39 was associated with a number of tissue residence and TGF-ß responsive transcription factors. Altogether, our data suggest CD39+ CD103- CD8+ tumor-infiltrating T cells are recently activated and likely rapidly differentiate towards tissue residence upon exposure to TGF-ß in the tumor micro-environment, explaining their relative paucity in human tumors.

4.
Oncoimmunology ; 10(1): 1936391, 2021 06 12.
Article in English | MEDLINE | ID: mdl-34178428

ABSTRACT

Activation of STimulator of INterferon Genes (STING) is important for induction of anti-tumor immunity. A dysfunctional STING pathway is observed in multiple cancer types and associates with poor prognosis and inferior response to immunotherapy. However, the association between STING and prognosis in virally induced cancers such as HPV-positive cervical cancer remains unknown. Here, we investigated the prognostic value of STING protein levels in cervical cancer using tumor tissue microarrays of two patient groups, primarily treated with surgery (n = 251) or radio(chemo)therapy (n = 255). We also studied CD103, an integrin that marks tumor-reactive cytotoxic T cells that reside in tumor epithelium and that is reported to associate with improved prognosis. Notably, we found that a high level of STING protein was an independent prognostic factor for improved survival in both the surgery and radio(chemo)therapy group. High infiltration of CD103+ T cells was associated with improved survival in the radio(chemo)therapy group. The combination of STING levels and CD103+ T cell infiltration is strongly associated with improved prognosis. We conclude that combining the prognostic values of STING and CD103 may improve the risk stratification of cervical cancer patients, independent from established clinical prognostic parameters.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Proteins/metabolism , Uterine Cervical Neoplasms , Antigens, CD , Female , Humans , Integrin alpha Chains , Integrins , Prognosis , Uterine Cervical Neoplasms/therapy
5.
Immunother Adv ; 1(1): ltab012, 2021 Jan.
Article in English | MEDLINE | ID: mdl-35919745

ABSTRACT

Dendritic cells (DCs) are key in the initiation of the adaptive T cell responses to tailor adequate immunity that corresponds to the type of pathogen encountered. Oppositely, DCs control the resolution phase of inflammation and are able to induce tolerance after receiving anti-inflammatory cytokines or upon encounter of self-associated molecular patterns, such as α2-3 linked sialic acid (α2-3sia). OBJECTIVE: We here investigated whether α2-3sia, that bind immune inhibitory Siglec receptors, would alter signaling and reprogramming of LPS-stimulated human monocyte-derived DCs (moDCs). METHODS AND RESULTS: Transcriptomic analysis of moDCs stimulated with α2-3sia-conjugated dendrimers revealed differentially expressed genes related to metabolic pathways, cytokines, and T cell differentiation. An increase in genes involved in ATPase regulator activity, oxidoreductase activity, and glycogen metabolic processes was detected. Metabolic extracellular flux analysis confirmed a more energetic moDC phenotype upon α2-3sia binding as evidenced by an increase in both glycolysis and mitochondrial oxidative phosphorylation. TH1 differentiation promoting genes IFNL and IL27, were significantly downregulated in the presence of α2-3sia. Functional assays confirmed that α2-3sia binding to moDCs induced phosphorylation of Siglec-9, reduced production of inflammatory cytokines IL-12 and IL-6, and increased IL-10. Surprisingly, α2-3sia-differentiated moDCs promoted FoxP3+CD25+/-CD127- regulatory T cell differentiation and decreased FoxP3-CD25-CD127- effector T cell proliferation. CONCLUSIONS: In conclusion, we demonstrate that α2-3sia binding to moDCs, phosphorylates Siglec-9, alters metabolic pathways, cytokine signaling, and T cell differentiation processes in moDCs and promotes regulatory T cells. The sialic acid-Siglec axis on DCs is therefore, a novel target to induce tolerance and to explore for immunotherapeutic interventions aimed to restore inflammatory processes.

6.
Cancer Sci ; 112(1): 61-71, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33040406

ABSTRACT

DNA-sensing receptor Cyclic GMP-AMP Synthase (cGAS) and its downstream signaling effector STimulator of INterferon Genes (STING) have gained significant interest in the field of tumor immunology, as a dysfunctional cGAS-STING pathway is associated with poor prognosis and worse response to immunotherapy. However, studies so far have not taken into account the polymorphic nature of the STING-encoding STING1 gene. We hypothesized that the presence of allelic variance in STING1 would cause variation between individuals as to their susceptibility to cancer development, cancer progression, and potential response to (immuno)therapy. To start to address this, we defined the genetic landscapes of STING1 in cervical scrapings and investigated their corresponding clinical characteristics across a unique cohort of cervical cancer patients and compared them with independent control cohorts. Although we did not observe an enrichment of particular STING1 allelic variants in cervical cancer patients, we did find that the occurrence of homozygous variants HAQ/HAQ and R232H/R232H of STING1 were associated with both younger age of diagnosis and higher recurrence rate. These findings were accompanied by worse survival, despite comparable mRNA and protein levels of STING and numbers of infiltrated CD8+ T cells. Our findings suggest that patients with HAQ/HAQ and R232H/R232H genotypes may have a dysfunctional cGAS-STING pathway that fails to promote efficient anticancer immunity. Interestingly, the occurrence of these genotypes coincided with homozygous presence of the V48V variant, which was found to be individually associated with worse outcome. Therefore, we propose V48V to be further evaluated as a novel prognostic marker for cervical cancer.


Subject(s)
Genetic Variation/genetics , Membrane Proteins/genetics , Uterine Cervical Neoplasms/genetics , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , Female , Genetic Association Studies , Genetic Variation/immunology , Genotype , Humans , Membrane Proteins/immunology , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Uterine Cervical Neoplasms/immunology , Young Adult
7.
Oncoimmunology ; 9(1): 1760705, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32923120

ABSTRACT

Epithelial Ovarian cancer (EOC) is the most lethal gynecological malignancy and has limited curative therapeutic options. Immunotherapy for EOC is promising, but clinical efficacy remains restricted to a small percentage of patients. Several lines of evidence suggest that the low response rate might be improved by combining immunotherapy with carboplatin and paclitaxel, the standard-of-care chemotherapy for EOC. Here, we assessed the immune contexture of EOC tumors, draining lymph nodes, and peripheral blood mononuclear cells during carboplatin/paclitaxel chemotherapy. We observed that the immune contexture of EOC patients is defined by the tissue of origin, independent of exposure to chemotherapy. Summarized, draining lymph nodes were characterized by a quiescent microenvironment composed of mostly non-proliferating naïve CD4 + T cells. Circulating T cells shared phenotypic features of both lymph nodes and tumor-infiltrating immune cells. Immunologically 'hot' ovarian tumors were characterized by ICOS, GITR, and PD-1 expression on CD4 + and CD8 + cells, independent of chemotherapy. The presence of PD-1 + cells in tumors prior to, but not after, chemotherapy was associated with disease-specific survival (DSS). Accordingly, we observed high MHC-I expression in tumors prior to chemotherapy, but minimal MHC-I expression in tumors after neoadjuvant chemotherapy, even though there were no differences in the number of tumor-infiltrating lymphocytes (TIL) in both groups. We therefore speculate that the TIL influx into the chemotherapy tumor microenvironment may be a consequence of the general inflammatory nature of chemotherapy-experienced tumors. Strategies to upregulate MHC-I during or after neoadjuvant chemotherapy may thus improve treatment outcome in these patients.


Subject(s)
Neoadjuvant Therapy , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/drug therapy , Female , Humans , Lymphocytes, Tumor-Infiltrating , Ovarian Neoplasms/drug therapy , Retrospective Studies , Tumor Microenvironment
8.
Front Immunol ; 11: 990, 2020.
Article in English | MEDLINE | ID: mdl-32536918

ABSTRACT

In this study we developed a liposome-based vaccine containing palmitoylated synthetic long peptides (SLP) and alpha galactosylceramide (αGC) to specifically target dendritic cells (DC) for activation of both innate (invariant natural killer T-cells [iNKT]) and adaptive (CD8+ T-cells) players of the immune system. Combination of model tumor specific antigens (gp100/MART-1) formulated as a SLP and αGC in one liposome results in strong activation of CD8+ and iNKT, as measured by IFNγ secretion. Moreover, addition of lipo-Lewis Y (LeY) to the liposomes for C-type lectin targeting increased not only uptake by monocyte-derived dendritic cells (moDC), dermal dendritic cells and Langerhans cells but also enhanced gp100-specific CD8+ T- and iNKT cell activation by human skin-emigrated antigen presenting cells in an ex vivo explant model. Loading of moDC with liposomes containing LeY also showed priming of MART-126-35L specific CD8+ T-cells. In conclusion, chemically linking a lipid tail to a glycan-based targeting moiety and SLP combined with αGC in one liposome allows for easy generation of vaccine formulations that target multiple skin DC subsets and induce tumor antigen specific CD8+ T- and iNKT cells. These liposomes present a new vaccination strategy against tumors.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/pharmacology , Dendritic Cells/drug effects , Galactosylceramides/pharmacology , Lewis Blood Group Antigens/pharmacology , Melanoma/drug therapy , Natural Killer T-Cells/drug effects , Peptides/pharmacology , Skin Neoplasms/drug therapy , Adaptive Immunity/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Galactosylceramides/immunology , Humans , Immunity, Innate/drug effects , Lewis Blood Group Antigens/immunology , Liposomes , Lymphocyte Activation/drug effects , Melanoma/immunology , Melanoma/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Peptides/immunology , Skin/drug effects , Skin/immunology , Skin/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Tissue Culture Techniques
9.
Front Immunol ; 11: 305, 2020.
Article in English | MEDLINE | ID: mdl-32161592

ABSTRACT

Many tumors display alterations in the biosynthetic pathways of glycosylation, resulting in increased expression of specific tumor-associated glycan structures. Expression of these altered glycan structures is associated with metastasis and poor prognosis. Antigen presenting cells can recognize tumor-associated glycan structures, including the truncated O-glycan Tn antigen, via specific glycan receptors. Tn antigen-mediated activation of the C-type lectin MGL on dendritic cells induces regulatory T cells via the enhanced secretion of IL-10. Although these findings indicate that MGL engagement by glycan ligands can modulate immune responses, the impact of MGL ligation on dendritic cells is still not completely understood. Therefore, we employed RNA sequencing, GO term enrichment and pathway analysis on human monocyte-derived dendritic cells stimulated with two different MGL glycan ligands. Our analyses revealed a reduced expression of genes coding for key enzymes involved in the glycolysis pathway, TCA cycle, and oxidative phosphorylation. In concordance with this, extracellular flux analysis confirmed the decrease in glycolytic activity upon MGL triggering in human dendritic cells. To our knowledge, we are the first to report a diminished glycolytic activity of human dendritic cells upon C-type lectin stimulation. Overall, our findings highlight the impact of tumor-associated glycans on dendritic cell biology and metabolism and will increase our understanding on how glycans can shape immunity.


Subject(s)
Acetylgalactosamine/metabolism , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Acetylgalactosamine/immunology , Dendritic Cells/immunology , Glycolysis , Glycosylation , Healthy Volunteers , Humans , Lectins, C-Type/immunology , Ligands , Oxidative Phosphorylation , Primary Cell Culture
10.
Cancer Immunol Res ; 7(5): 784-796, 2019 05.
Article in English | MEDLINE | ID: mdl-30872264

ABSTRACT

The chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the TGFß-dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8+ T cells from peripheral blood activated in the presence of TGFß upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFß receptor signaling abrogated CXCL13 production. CXCL13+CD103+CD8+ TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFß plays a noncanonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13+CD103+CD8+ TILs in mediating B-cell recruitment and TLS formation in human tumors.


Subject(s)
Antigens, CD/immunology , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL13/immunology , Integrin alpha Chains/immunology , Ovarian Neoplasms/immunology , Receptors, Transforming Growth Factor beta/immunology , Antigens, Neoplasm/immunology , Female , Humans
11.
Front Immunol ; 9: 2807, 2018.
Article in English | MEDLINE | ID: mdl-30581432

ABSTRACT

One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for "self" or "non-self" recognition. In this review we will focus on sialic acids that serve as "self" molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.


Subject(s)
Glycoproteins/immunology , Immune Tolerance , Lectins, C-Type/immunology , N-Acetylneuraminic Acid/immunology , Phagocytes/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Animals , Glycolipids/immunology , Humans
12.
J Control Release ; 266: 87-99, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-28919557

ABSTRACT

Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.


Subject(s)
Allergens/administration & dosage , Antigens, Plant/administration & dosage , Dendritic Cells/immunology , Lasers , Mannans/administration & dosage , Skin/immunology , Vaccination/methods , Administration, Cutaneous , Animals , Complement Activation , Female , Humans , Immunoglobulin E/immunology , Mice, Inbred BALB C , Porosity , Th1 Cells/immunology , Th17 Cells/immunology
13.
Arthritis Res Ther ; 18(1): 205, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27629388

ABSTRACT

BACKGROUND: Multiple lymphocyte subsets like T and B cells have been connected to joint infiltration and inflammation in rheumatoid arthritis (RA). Identification of leucocyte subsets that are dysregulated in arthritis development could provide insight into the aetiology of RA. This study aimed to investigate the composition of the peripheral blood components, i.e. CD14(+) monocytes, CD4(+) and CD8(+) T lymphocytes (CD3(+)), CD80(+), C-X-C chemokine receptor 3 (CXCR3)(+) and CD27(+) B lymphocytes (CD19(+)), CD16(+)CD56(+)CD3(-) natural killer (NK) cells and activated CD56(+)CD3(+) T cells, for association with arthritis development in patients with arthralgia. METHODS: Peripheral blood was collected from 89 patients with early RA (disease duration <6 months), 37 healthy controls (HC) and 113 patients with arthralgia (22 developed arthritis within ≤1 year, 18 developed arthritis after >1 year and 73 did not develop arthritis). Absolute numbers of monocytes and lymphocyte subsets in whole heparinized blood were determined with flow cytometry using quantification beads in combination with fluorescent labelled antibodies for T cells, B cells, monocytes, NK cells and activated T cells. RESULTS: In patients with early RA, significant decreases in numbers of (activated) T cells, CD80(+) and memory B cells and a trend towards smaller numbers of CD8(+) T cells was observed compared to HC. Similar differences were seen in patients with arthralgia who developed or did not develop arthritis (non-converters), with significantly decreased CD8(+) T cells and memory B cells. Patients with arthralgia who developed arthritis were split into groups that developed arthritis within 1 year (early converters) or after 1 year (late converters). Late converters had a significantly decreased number of CD8(+) T cells compared to non-converters; early converters had a decreased number of memory B cells. Longitudinal analysis of converters showed a significant relative increase in CD80(+) B cells towards the conversion time point compared to 24 months prior to conversion. CONCLUSIONS: This study revealed that patients with arthralgia who develop arthritis demonstrate a change in cellular immune parameters apparent in the periphery, starting with a decrease in cytotoxic T cells 24 months prior to arthritis development, followed by a decrease in the number of memory B cells 12 months prior to disease onset.


Subject(s)
Arthralgia/immunology , Arthritis, Rheumatoid/immunology , Lymphocyte Subsets/immunology , Adult , Aged , Female , Flow Cytometry , Humans , Male , Middle Aged
14.
Arthritis Res Ther ; 18: 165, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27411379

ABSTRACT

BACKGROUND: The type I interferon (IFN) signature in rheumatoid arthritis (RA) has shown clinical relevance in relation to disease onset and therapeutic response. Identification of the cell type(s) contributing to this IFN signature could provide insight into the signature's functional consequences. The aim of this study was to investigate the contribution of peripheral leukocyte subsets to the IFN signature in early arthritis. METHODS: Blood was collected from 26 patients with early arthritis and lysed directly or separated into peripheral blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). PBMCs were sorted into CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD14(+) monocytes by flow cytometry. Messenger RNA expression of three interferon response genes (IRGs RSAD2, IFI44L, and MX1) and type I interferon receptors (IFNAR1 and IFNAR2) was determined in whole blood and blood cell subsets by quantitative polymerase chain reaction. IRG expression was averaged to calculate an IFN score for each sample. RESULTS: Patients were designated "IFN(high)" (n = 8) or "IFN(low)" (n = 18) on the basis of an IFN score cutoff in whole peripheral blood from healthy control subjects. The difference in IFN score between IFN(high) and IFN(low) patients was remarkably large for the PMN fraction (mean 25-fold) compared with the other subsets (mean 6- to 9-fold), indicating that PMNs are the main inducers of IRGs. Moreover, the relative contribution of the PMN fraction to the whole-blood IFN score was threefold higher than expected from its abundance in blood (p = 0.008), whereas it was three- to sixfold lower for the other subsets (p ≤ 0.063), implying that the PMNs are most sensitive to IFN signaling. Concordantly, IFNAR1 and IFNAR2 were upregulated compared with healthy controls selectively in patient PMNs (p ≤ 0.0077) but not in PBMCs. CONCLUSIONS: PMNs are the main contributors to the whole-blood type I IFN signature in patients with early arthritis, which seems due to increased sensitivity of these cells to type I IFN signaling. Considering the well-established role of neutrophils in the pathology of arthritis, this suggests a role of type I IFN activity in the disease as well.


Subject(s)
Arthritis, Rheumatoid/immunology , Granulocytes/immunology , Interferon Type I/biosynthesis , Transcriptome/immunology , Adult , Arthritis, Rheumatoid/blood , Cell Separation , Female , Flow Cytometry , Granulocytes/metabolism , Humans , Interferon Type I/immunology , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Polymerase Chain Reaction
15.
Oncoimmunology ; 4(1): e954829, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25949858

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.

17.
Ann Rheum Dis ; 72(5): 776-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23434571

ABSTRACT

OBJECTIVES: To validate the presence and demonstrate the clinical value of the type I interferon (IFN)-signature during arthritis development. METHOD: In 115 seropositive arthralgia patients who were followed for the development of arthritis (Amsterdam Reade cohort), and 25 presymptomatic individuals who developed rheumatoid arthritis (RA) later, and 45 population-based controls (Northern Sweden cohort), the expression levels of 7 type I IFN response genes were determined with multiplex qPCR and an IFN-score was calculated. The diagnostic performance of the IFN-score was evaluated using Cox regression and Receiver Operating Characteristics (ROC)-curve analysis. RESULTS: In 44 of the 115 at-risk individuals (38%) from the Amsterdam Reade cohort, arthritis developed after a median period of 8 months (IQR 5-13). Stratification of these individuals based on the IFN-score revealed that 15 out of 25 IFN(high) individuals converted to arthritis, compared with 29 out of 90 IFN(low) individuals (p=0.011). In the Northern Sweden cohort, the level of the IFN-score was also significantly increased in presymptomatic individuals who developed RA compared with population-based controls (p=0.002). Cox regression analysis of the Amsterdam Reade cohort showed that the hazard ratio (HR) for development of arthritis was 2.38 (p=0.008) for IFN(high) at-risk individuals after correction for anticitrullinated protein antibodies (ACPA) and rheumatoid factor (RF). The ROC-curve area under the curve (AUC) for the IFN-score combined with ACPA and RF in the prediction of arthritis was 78.5% (p=0.0001, 95% CI 0.70 to 0.87). CONCLUSIONS: The results demonstrated clinical utility for the IFN-signature as a biomarker in the prediction of arthritis development.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Interferon Type I/blood , Adult , Aged , Arthritis, Rheumatoid/epidemiology , Biomarkers/blood , Cohort Studies , Early Diagnosis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Netherlands/epidemiology , Predictive Value of Tests , Proportional Hazards Models , ROC Curve , Risk Factors , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...