Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Isotopes Environ Health Stud ; 58(4-6): 340-362, 2022.
Article in English | MEDLINE | ID: mdl-35984898

ABSTRACT

The isotope biogeochemistry of bioindicators has widely demonstrated its added value in environmental issues by allowing to precisely identify sources of contamination. Most of the studies are based on studying one or two isotope systematics. Here, we are presenting an innovative multi-proxy approach that combines chemistry with both stable (C, S, N) and radiogenic (Pb) isotope systematics. Using Hypogymnia physodes bioindicators, we evaluated air quality in the complex environment of the Swietokrzyski National Park (SNP, Poland) with the ultimate objective of isotopically identifying the sources responsible for the observed contamination. Combining the isotope systematics showed that home heating is a major source of contamination in winter, whereas the contribution of road traffic increases during the summer. Pb isotope ratios identified industrial activities as the major source of this metal in the atmosphere.


Subject(s)
Air Pollution , Lichens , Parks, Recreational , Poland , Isotopes
2.
Microorganisms ; 7(9)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505790

ABSTRACT

Anthropogenic disturbances can have strong impacts on lichen communities, as well as on individual species of lichenized fungi. Traditionally, lichen monitoring studies are based on the presence and abundance of fungal morphospecies. However, the photobionts, as well photobiont mycobiont interactions also contribute to the structure, composition, and resilience of lichen communities. Here we assess the genetic diversity and interaction patterns of algal and fungal partners in lichen communities along an anthropogenic disturbance gradient in Bialowieza Forest (Poland). We sampled a total of 224 lichen thalli in a protected, a managed, and a disturbed area of the forest, and sequenced internal transcribed spacer (ITS) ribosomal DNA (rDNA) of both, fungal and algal partners. Sequence clustering using a 97% similarity threshold resulted in 46 fungal and 23 green algal operational taxonomic units (OTUs). Most of the recovered photobiont OTUs (14 out of 23) had no similar hit in the NCBI-BLAST search, suggesting that even in well studied regions, such as central Europe, a lot of photobiont diversity is yet undiscovered. If a mycobiont was present at more than one site, it was typically associated with the same photobiont OTU(s). Generalist species, i.e., taxa that associate with multiple symbiont partners, occurred in all three disturbance regimes, suggesting that such taxa have few limitations in colonizing or persisting in disturbed areas. Trebouxia jamesii associated with 53% of the fungal OTUs, and was generally the most common photobiont OTU in all areas, implying that lichens that associate with this symbiont are not limited by the availability of compatible photobionts in Central European forests, regardless of land use intensity.

3.
MycoKeys ; 57: 1-30, 2019.
Article in English | MEDLINE | ID: mdl-31406483

ABSTRACT

Six new Micarea species are described from Europe. Phylogenetic analyses, based on three loci, i.e. mtSSU rDNA, Mcm7 and ITS rDNA and ancestral state reconstructions, were used to evaluate infra-group divisions and the role of secondary metabolites and selected morphological characters on the taxonomy in the M. prasina group. Two main lineages were found within the group. The Micarea micrococca clade consists of twelve species, including the long-known M. micrococca and the newly described M. microsorediata, M. nigra and M. pauli. Within this clade, most species produce methoxymicareic acid, with the exceptions of M. levicula and M. viridileprosa producing gyrophoric acid. The M. prasina clade includes the newly described M. azorica closely related to M. prasina s.str., M. aeruginoprasina sp. nov. and M. isidioprasina sp. nov. The species within this clade are characterised by the production of micareic acid, with the exception of M. herbarum which lacks any detectable substances and M. subviridescens that produces prasinic acid. Based on our reconstructions, it was concluded that the ancestor of the M. prasina group probably had a thallus consisting of goniocysts, which were lost several times during evolution, while isidia and soredia evolved independently at multiple times. Our research supported the view that the ancestor of M. prasina group did not produce any secondary substances, but they were gained independently in different lineages, such as methoxymicareic acid which is restricted to M. micrococca and allied species or micareic acid present in the M. prasina clade.

4.
Environ Sci Pollut Res Int ; 25(25): 25348-25362, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29946844

ABSTRACT

SO2, NOx, and metals (including Cd, Cu, Pb, Zn, Mn, Mg, Fe) present in airborne particulate matter are a major threat to preserving good air quality. The complicated pathways and transformation processes that can change their physical/chemical state in the atmosphere renders identifying their origin extremely difficult. With the objective of alleviating this difficulty, we identified and characterized potential local and regional sources of atmospheric pollutants using bioindicators (Hypogymnia physodes) from the Swietokrzyski National Park (SE Poland): 20 lichen samples were collected during winter (February; heating period) and summer (June; vegetative period) seasons and analyzed for metal contents and free radicals concentrations. Our results indicate that the highest gaseous pollutant levels were observed during the heating season, along roads (NO2) and at the highest elevation (SO2). The semiquinone/phenoxyl radical concentrations correlated during the heating season with the atmospheric SO2: ln (free radicals concentrations) = 0.025 SO2atmosphere + 39.11. For Mn/Fe ≥ 2, the electron paramagnetic resonance (EPR) spectra presented a hyperfine splitting. Results showed that since 1994 metal concentrations increased for Cd, Mn, and Mg, Fe remained somewhat constant for Zn and Cu but slightly decreased for Pb, in agreement with the phasing out of lead in gasoline. Finally, a principal component analysis (PCA) identified two main factors controlling variability within the analyzed parameters: air pollutants transport over long distances and local fuel combustion by both transport and home heating.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Lichens/chemistry , Metals/analysis , Parks, Recreational , Seasons , Electron Spin Resonance Spectroscopy , Environmental Monitoring/methods , Metals, Heavy/analysis , Nitrogen Dioxide/analysis , Parmeliaceae , Particulate Matter/analysis , Poland , Principal Component Analysis , Sulfur Dioxide/analysis
5.
Sci Total Environ ; 643: 468-478, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29945082

ABSTRACT

Epiphytic lichens are sensitive bioindicators responding to climate change and atmospheric pollutants. Climate warming changes in lichen biota have been reported from Western and Central Europe; therefore, similar trends in the biota of the close-to-natural forests of Eastern Europe were expected. In both examinations (1987-1989 and 2015-2016) of 144 permanent plots the same field method was used. The following functional epiphyte groups were distinguished: climate warming indicators (VDI species and species containing Trentepohlia algae) and Wirth's ecological indicators (T - temperature, N - eutrophication, R - reaction, M - moisture). PCA ordination for exploring species composition changes, species richness and diversity (Shannon-Wiener index) in different forest types was used. When compared with the earlier survey, a higher plot species richness, Shannon-Wiener diversity index, and proportion of more nitrogen-demanding lichens, and lower proportions of warm-demanding and high-acidity tolerant lichens were found. No change in the epiphyte biota composition influenced by the decreasing atmospheric precipitation was detected. The species richness and Shannon-Wiener index of climate warming indicators did not show a significant change. Although the share and frequency of epiphytic lichen species and their functional groups changed over a 25-year period, no relationship was found to be related to climate warming: indicators of global warming showed no significant change in frequency, while those with higher value of T even decreased frequency. The changes suggest a connection with eutrophication (increase in frequency of species with higher value of N) and a decrease in sulphur deposition (increase in frequency of species with higher value of R).


Subject(s)
Biota , Climate Change , Environmental Monitoring , Lichens/physiology , Biodiversity , Europe , Forests , Nitrogen , Poland
6.
Sci Rep ; 8(1): 4952, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563606

ABSTRACT

Phylogenetic analyses using mtSSU and nuITS sequences of Buellia violaceofusca (previously placed in Lecanoromycetes), a sterile, sorediate lichen having a trebouxioid photobiont, surprisingly prove that the species is conspecific with Lecanographa amylacea (Arthoniomycetes), a fertile, esorediate species with a trentepohlioid photobiont. These results suggest that L. amylacea and B. violaceofusca are photomorphs of the same mycobiont species, which, depending on the photobiont type, changes the morphology and the reproduction strategy. This is the first example of a lichenized fungus that can select between Trebouxia (Trebouxiophyceae) and trentepohlioid (Ulvophyceae) photobionts. Trebouxia photobionts from the sorediate morphotype belong to at least three different phylogenetic clades, and the results suggest that Lecanographa amylacea can capture the photobiont of other lichens such as Chrysothrix candelaris to form the sorediate morphotype. Phylogenetic analyses based on rbcL DNA data suggest that the trentepohlioid photobiont of L. amylacea is closely related to Trentepohlia isolated from fruticose lichens. The flexibility in the photobiont choice enables L. amylacea to use a larger range of tree hosts. This strategy helps the lichen to withstand changes of environmental conditions, to widen its distribution range and to increase its population size, which is particularly important for the survival of this rare species.


Subject(s)
Ascomycota/genetics , Host Microbial Interactions/physiology , Lichens/microbiology , Phylogeny , Symbiosis/physiology , Adaptation, Physiological , Chloroplasts/genetics , DNA, Plant/genetics , Lichens/classification , Lichens/physiology , Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/genetics
7.
MycoKeys ; (44): 51-62, 2018.
Article in English | MEDLINE | ID: mdl-30595657

ABSTRACT

A sterile sorediate member of the genus Bacidia s.str., B.albogranulosa, is described here as a new species. It is characterised by its very thin, pale grey thallus, white, farinose to granular soredia, the production of atranorin and the absence of ascomata and pycnidia. It grows on slightly acidic to subneutral bark of broad-leaved trees in old-growth forests in the Czech Republic, Poland, Ukraine and Russia (European part of the Caucasus). The new species is well characterised by its morphology, secondary chemistry and molecular (nrITS, mtSSU) traits. It is closely related to other atranorin-containing species in the genus, Bacidiadiffracta, B.polychroa and B.suffusa.

SELECTION OF CITATIONS
SEARCH DETAIL
...