Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters










Publication year range
1.
Clin Perinatol ; 51(2): 497-510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705654

ABSTRACT

This review examines the complexities of preterm birth (PTB), emphasizes the pivotal role of inflammation in the pathogenesis of preterm labor, and assesses current available interventions. Antibiotics, progesterone analogs, mechanical approaches, nonsteroidal anti-inflammatory drugs, and nutritional supplementation demonstrate a limited efficacy. Tocolytic agents, targeting uterine activity and contractility, inadequately prevent PTB by neglecting to act on uteroplacental inflammation. Emerging therapies targeting toll-like receptors, chemokines, and interleukin receptors exhibit promise in mitigating inflammation and preventing PTB.


Subject(s)
Premature Birth , Tocolytic Agents , Humans , Pregnancy , Female , Premature Birth/prevention & control , Tocolytic Agents/therapeutic use , Infant, Newborn , Inflammation/drug therapy , Inflammation/prevention & control , Obstetric Labor, Premature/prevention & control
2.
J Med Chem ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771638

ABSTRACT

Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of ß-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the ß-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized ß-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained ß-sheet structures.

3.
Front Pharmacol ; 15: 1303342, 2024.
Article in English | MEDLINE | ID: mdl-38384295

ABSTRACT

The scientific and medical community faced an unprecedented global health hazard that led to nearly 7 million deaths attributable to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In spite of the development of efficient vaccines against SARS-CoV-2, many people remain at risk of developing severe symptoms as the virus continues to spread without beneficial patient therapy. The hyper-inflammatory response to SARS-CoV-2 infection progressing to acute respiratory distress syndrome remains an unmet medical need for improving patient care. The viral infection stimulates alveolar macrophages to adopt an inflammatory phenotype regulated, at least in part, by the cluster of differentiation 36 receptor (CD36) to produce unrestrained inflammatory cytokine secretions. We suggest herein that the modulation of the macrophage response using the synthetic CD36 ligand hexarelin offers potential as therapy for halting respiratory failure in SARS-CoV-2-infected patients.

4.
J Med Chem ; 66(20): 14241-14262, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37800680

ABSTRACT

Urotensin II receptor (UT) modulators that differentiate the effects of the endogenous cyclic peptide ligands urotensin II (UII) and urotensin II-related peptide (URP) offer potential for dissecting their respective biological roles in disease etiology. Selective modulators of hUII and URP activities were obtained using 1,3,4-benzotriazepin-2-one mimics of a purported bioactive γ-turn conformation about the Bip-Lys-Tyr tripeptide sequence of urocontrin ([Bip4]URP). Considering an active ß-turn conformer about the shared Phe-Trp-Lys-Tyr sequence of UII and URP, 8-substituted 1,3,4-benzotriazepin-2-ones were designed to mimic the Phe-Bip-Lys-Tyr tetrapeptide sequence of urocontrin, synthesized, and examined for biological activity. Subtle 5- and 8-position modifications resulted in biased signaling and selective modulation of hUII- or URP-induced vasoconstriction. For example, p-hydroxyphenethyl analogs 17b-d were strong Gα13 and ßarr1 activators devoid of Gαq-mediated signaling. Tertiary amides 15d and 17d negatively modulated hUII-induced vasoconstriction without affecting URP-mediated responses. Benzotriazepinone carboxamides proved to be exceptional tools for elucidating the pharmacological complexity of UT.


Subject(s)
Peptide Hormones , Urotensins , Urotensins/pharmacology , Peptide Hormones/chemistry , Molecular Conformation , Signal Transduction , Receptors, G-Protein-Coupled
5.
Biomedicines ; 11(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37760981

ABSTRACT

Assessment of structure-activity relationships for anti-protozoan activity revealed a strategy for preparing potent anisomycin derivatives with reduced host toxicity. Thirteen anisomycin analogs were synthesized by modifying the alcohol, amine, and aromatic functional groups. Examination of anti-protozoal activity against various strains of Leishmania and cytotoxicity against leucocytes with comparison against the parent natural product demonstrated typical losses of activity with modifications of the alcohol, amine, and aromatic meta-positions. On the other hand, the para-phenol moiety of anisomycin proved an effective location for introducing substituents without significant loss of anti-protozoan potency. An entry point for differentiating activity against Leishmania versus host has been uncovered by this systematic study.

6.
Front Pharmacol ; 14: 1204905, 2023.
Article in English | MEDLINE | ID: mdl-37332345

ABSTRACT

Atherosclerosis is a chronic inflammatory disease of the arterial walls that develops at predisposed sites. As a major risk factor for adverse cardiovascular pathology, atherosclerosis can progress to myocardial infarction and stroke, due to the rupture of unstable atherosclerotic lesions. Macrophage uptake of modified lipoproteins and metabolic dysfunction contributes significantly to the initiation and development of atherosclerotic lesions. The cluster of differentiation 36 receptor [CD36 (SR-B2)] plays a key role in atherosclerotic lesion progression and acts as an efferocytic molecule in the resolution of advanced plaque. In previous studies, linear azapeptide CD36 ligands were shown to exhibit anti-atherosclerotic properties. In the present study, a novel potent and selective macrocyclic azapeptide CD36 ligand, MPE-298, has proven effective in protecting against atherosclerosis progression. Features of greater plaque stability were observed after 8 weeks of daily injections with the cyclic azapeptide in apolipoprotein E-deficient mice fed a high-fat high-cholesterol diet.

7.
J Org Chem ; 88(7): 4633-4648, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36930829

ABSTRACT

Topological mimicry of peptide ß-turn secondary structures has been investigated using a 1,3,5,8-tetrasubstituted 1,3,4-benzotriazepin-2-one scaffold. Approaches were conceived for the synthesis of tetrasubstituted benzotriazepinones from 4-acetyl-3-aminobenzoate based on aza-amino acid chemistry and different orthogonal protection strategies. Installation of an 8-position carboxylate on the aromatic ring enabled a diverse array of substituents to be introduced for mimicry of the i-position residue. Benzotriazepin-2-one crystallization and X-ray analysis demonstrated that in spite the absence of a stereogenic carbon center, the scaffold could serve as type I and I' ß-turn mimics, because pyramidalization of the N3-nitrogen in the benzotriazepin-2-one provides potential for adoptive chirality. 1,3,5,8-Tetrasubstituted 1,3,4-benzotriazepin-2-one scaffolds offer interesting potential for the cost-effective synthesis of nonpeptide ß-turn surrogates for peptide mimicry in various recognition events.

8.
J Med Chem ; 66(4): 3058-3072, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36763536

ABSTRACT

Transient soluble oligomers of amyloid-ß (Aß) are considered among the most toxic species in Alzheimer's disease (AD). Soluble Aß oligomers accumulate early prior to insoluble plaque formation and cognitive impairment. The cyclic d,l-α-peptide CP-2 (1) self-assembles into nanotubes and demonstrates promising anti-amyloidogenic activity likely by a mechanism involving engagement of soluble oligomers. Systematic replacement of the residues in peptide 1 with aza-amino acid counterparts was performed to explore the effects of hydrogen bonding on propensity to mitigate Aß aggregation and toxicity. Certain azapeptides exhibited improved ability to engage, alter the secondary structure, and inhibit aggregation of Aß. Moreover, certain azapeptides disassembled preformed Aß fibrils and protected cells from Aß-mediated toxicity. Substitution of the l-norleucine3 and d-serine6 residues in peptide 1 with aza-norleucine and aza-homoserine provided, respectively, nontoxic [azaNle3]-1 (4) and [azaHse6]-1 (7), that significantly abated symptoms in a transgenic Caenorhabditis elegans AD model by decreasing Aß oligomer levels.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Nanotubes, Peptide , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Protein Structure, Secondary , Caenorhabditis elegans , Disease Models, Animal
9.
Am J Obstet Gynecol ; 228(4): 467.e1-467.e16, 2023 04.
Article in English | MEDLINE | ID: mdl-36244408

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality. Studies have shown that interleukin 1 plays a major role in the pathophysiology of preterm birth by inducing the production of proinflammatory mediators and uterine activation proteins leading to labor. More importantly, uteroplacental inflammation, associated with preterm birth parturition pathways, is detrimental to fetal tissues and leads to long-term sequelae. Our group has developed an allosteric antagonist of the interleukin 1 receptor, rytvela, found to be potent and safe in preventing preterm birth by suppressing inflammation via the inhibition of the mitogen-activated protein kinase pathway while preserving the Nuclear factor kappa B pathway (important in immune vigilance). Rytvela has been shown to inhibit inflammatory up-regulation and uterine activation while preserving fetal development. OBJECTIVE: This study aimed to further the preclinical development of rytvela by evaluating its optimal dose and minimal duration of treatment to inhibit the inflammatory cascade, prolong gestation, and promote neonatal outcomes. STUDY DESIGN: Pregnant CD-1 mice were administered with lipopolysaccharide (10 µg, intraperitoneal administration) or interleukin 1 (1 µg/kg, intrauterine administration) on gestational day 16 to induce preterm labor. Rytvela was administered at different doses (0.1, 0.5, 1.0, 2.0, 4.0 mg/kg/d subcutaneously) from gestational days 16 to 18.5. To evaluate the minimal duration of treatment, the mice were administered with rytvela (2 mg/kg/d subcutaneously) for 24, 36, or 48 hours. The rate of prematurity (gestational day <18.5) and neonate survival and weight were evaluated. Gestational tissues were collected at gestational day 17.5 to quantify cytokines, proinflammatory mediators, and uterine activating proteins by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The neonatal lungs and intestines were collected from postnatal days 5 to 7 and analyzed by histology. RESULTS: Rytvela exhibited a dose-response profile and achieved maximum efficacy at a dose of 2 mg/kg/d by reducing 70% of lipopolysaccharide-induced preterm births and 60% of interleukin 1ß-induced preterm births. In addition, rytvela attained maximum efficacy at a dose of 1 mg/kg/d by increasing neonate survival by up to 65% in both models of preterm birth. Rytvela protected fetuses from inflammatory insult as of 24 hours, preserving lung and intestinal integrity, and prevented preterm birth and fetal mortality by 60% and 50%, respectively, as of 36 hours of treatment. CONCLUSION: The maximum efficacy of rytvela was achieved at 2 mg/kg/d with improved birth outcomes and prevented inflammatory up-regulation upon 36 hours (only) of treatment. Rytvela exhibited desirable properties for the safe prevention of preterm birth and fetal protection.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Animals , Mice , Premature Birth/prevention & control , Lipopolysaccharides/adverse effects , Fetus , Inflammation , Anti-Inflammatory Agents , Interleukin-1
10.
J Pept Sci ; 29(3): e3455, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36184819

ABSTRACT

In pursuit of more effective-labor delaying tocolytic agents, the prostaglandin F2α (PGF2α) receptor (FP) modulator PDC113.824 [(6S)-2] represents a potent lead for developing therapy to treat preterm birth. Derivatives of FP modulator (6S)-2 were synthesized, possessing respectively 5- and 7-hydroxyl groups on the indolizidin-2-one amino acid (I2 aa) residue. The effects of the alcohol substituents were examined in a PGF2α-induced myometrial contraction assay. Based on knowledge of dihedral angle values of model I2 aa peptides from X-ray analyses, the results of the study indicate respectively encouraging and limited potential for creating improved tocolytic agents by modifications at the 5- and 7-positions.


Subject(s)
Premature Birth , Tocolytic Agents , Female , Infant, Newborn , Humans , Tocolytic Agents/pharmacology , Dinoprost/pharmacology , Uterine Contraction , Myometrium
11.
Proc Natl Acad Sci U S A ; 119(49): e2210766119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442093

ABSTRACT

Transient soluble oligomers of amyloid-ß (Aß) are toxic and accumulate early prior to insoluble plaque formation and cognitive impairment in Alzheimer's disease (AD). Synthetic cyclic D,L-α-peptides (e.g., 1) self-assemble into cross ß-sheet nanotubes, react with early Aß species (1-3 mers), and inhibit Aß aggregation and toxicity in stoichiometric concentrations, in vitro. Employing a semicarbazide as an aza-glycine residue with an extra hydrogen-bond donor to tune nanotube assembly and amyloid engagement, [azaGly6]-1 inhibited Aß aggregation and toxicity at substoichiometric concentrations. High-resolution NMR studies revealed dynamic interactions between [azaGly6]-1 and Aß42 residues F19 and F20, which are pivotal for early dimerization and aggregation. In an AD mouse model, brain positron emission tomography (PET) imaging using stable 64Cu-labeled (aza)peptide tracers gave unprecedented early amyloid detection in 44-d presymptomatic animals. No tracer accumulation was detected in the cortex and hippocampus of 44-d-old 5xFAD mice; instead, intense PET signal was observed in the thalamus, from where Aß oligomers may spread to other brain parts with disease progression. Compared with standard 11C-labeled Pittsburgh compound-B (11C-PIB), which binds specifically fibrillar Aß plaques, 64Cu-labeled (aza)peptide gave superior contrast and uptake in young mouse brain correlating with Aß oligomer levels. Effectively crossing the blood-brain barrier (BBB), peptide 1 and [azaGly6]-1 reduced Aß oligomer levels, prolonged lifespan of AD transgenic Caenorhabditis elegans, and abated memory and behavioral deficits in nematode and murine AD models. Cyclic (aza)peptides offer novel promise for early AD diagnosis and therapy.


Subject(s)
Alzheimer Disease , Amyloidosis , Animals , Mice , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Early Diagnosis , Amyloid beta-Peptides , Plaque, Amyloid , Amyloidogenic Proteins
12.
Org Biomol Chem ; 20(40): 7963-7971, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36190455

ABSTRACT

Novel all-hydrocarbon cross-linked aza-stapled peptides were designed and synthesized for the first time by ring-closing metathesis between two aza-alkenylglycine residues. Three aza-stapled peptidic analogues based on the peptide dual inhibitor of p53-MDM2/MDMX interactions were synthesized and screened for biological activities. Among the three aza-stapled peptides, aSPDI-411 displayed increased anti-tumor activity, binding affinities to both MDM2 and MDMX, and cell membrane permeability compared to its linear peptide counterpart.


Subject(s)
Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Peptides/chemistry , Protein Binding , Hydrocarbons
13.
Biomedicines ; 10(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36009584

ABSTRACT

The celebration of one hundred years of insulin therapy in 2021 marked a milestone for the application of peptide-based therapeutics [...].

14.
J Biol Chem ; 298(9): 102294, 2022 09.
Article in English | MEDLINE | ID: mdl-35872018

ABSTRACT

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13 , GTP-Binding Protein alpha Subunits, Gq-G11 , Receptor, Angiotensin, Type 1 , Receptors, Prostaglandin , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Ligands , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin/metabolism
15.
Molecules ; 26(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204673

ABSTRACT

The almiramide N-methylated lipopeptides exhibit promising activity against trypanosomatid parasites. A structure-activity relationship study has been performed to examine the influences of N-methylation and conformation on activity against various strains of leishmaniasis protozoan and on cytotoxicity. The synthesis and biological analysis of twenty-five analogs demonstrated that derivatives with a single methyl group on either the first or fifth residue amide nitrogen exhibited greater activity than the permethylated peptides and relatively high potency against resistant strains. Replacement of amino amide residues in the peptide, by turn inducing α amino γ lactam (Agl) and N-aminoimidazalone (Nai) counterparts, reduced typically anti-parasitic activity; however, peptide amides possessing Agl residues at the second residue retained significant potency in the unmethylated and permethylated series. Systematic study of the effects of methylation and turn geometry on anti-parasitic activity indicated the relevance of an extended conformer about the central residues, and conformational mobility by tertiary amide isomerization and turn geometry at the extremities of the active peptides.


Subject(s)
Leishmania/drug effects , Lipopeptides/chemistry , Lipopeptides/pharmacology , Amides/chemistry , Isomerism , Methylation , Protein Conformation , Structure-Activity Relationship
16.
Org Lett ; 23(13): 5192-5196, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34161105

ABSTRACT

6-Hydroxymethyl indolizidin-2-one amino acids were synthesized in 10 steps from l-serine by intramolecular ring opening of a symmetrical epoxide and lactam formation. X-ray analyses indicated the bicycles replicated ideal peptide type II' ß-turn central dihedral angle geometry. Inside a prostaglandin-F2α receptor modulator, the 6-hydroxymethyl analogue retained inhibitory activity on myometrial contractility.


Subject(s)
Amino Acids/chemical synthesis , Dipeptides/chemistry , Prostaglandins/chemistry , Amino Acids/chemistry , Biochemical Phenomena , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure
17.
J Med Chem ; 64(13): 9365-9380, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34161728

ABSTRACT

Cyclic peptide diversity has been broadened by elaborating the A3-macrocyclization to include various di-amino carboxylate components with different Nε-amine substituents. Triple-bond reduction provided new cyclic peptide macrocycles with Z-olefin and completely saturated structures. Moreover, cyclic azasulfurylpeptides were prepared by exchanging the propargylglycine (Pra) component for an amino sulfamide surrogate. Examination of such diversity-oriented methods on potent cyclic azapeptide modulators of the cluster of differentiation 36 receptor (CD36) identified the importance of the triple bond as well as the Nε-allyl lysine and azaPra residues for high CD36 binding affinity. Cyclic azapeptides which engaged CD36 effectively reduced pro-inflammatory nitric oxide and downstream cytokine and chemokine production in macrophages stimulated with a Toll-like receptor-2 agonist. Studying the triple bond and amine components in the multiple-component A3-macrocyclization has given a diverse array of macrocycles and pertinent information to guide the development of ideal CD36 modulators with biomedical potential for curbing macrophage-driven inflammation.


Subject(s)
CD36 Antigens/metabolism , Macrocyclic Compounds/pharmacology , Peptides, Cyclic/pharmacology , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship
18.
Oxid Med Cell Longev ; 2021: 6691402, 2021.
Article in English | MEDLINE | ID: mdl-33854697

ABSTRACT

The retinal pigment epithelium (RPE) performs many functions that maintain photoreceptor health. Oxidative damage to the RPE is a critical component in the pathogenesis of eye diseases such as age-related macular degeneration (AMD). Ligands of the cluster of differentiation 36 (CD36) have previously preserved photoreceptor integrity in mouse models of AMD. The cytoprotective effect of the CD36 ligand MPE-001 on RPE cells has now been elucidated employing a model of oxidative stress. Sodium iodate (NaIO3) induced formation of reactive oxygen species and apoptosis in human RPE cells, which were decreased by MPE-001 without affecting antioxidant enzyme transcription. Immunoblotting and immunostaining assays showed a restorative effect of MPE-001 on the autophagic flux disrupted by NaIO3, which was associated with an increase in syntaxin 17-positive mature autophagosomes. The cytoprotective effect of MPE-001 was completely abolished by the autophagy inhibitors wortmannin and bafilomycin A1. In conclusion, we report for the first time an autophagy-dependent protection of RPE cells from oxidative stress by a CD36 ligand.


Subject(s)
CD36 Antigens/metabolism , Oligopeptides/pharmacology , Oxidative Stress/drug effects , Retinal Pigment Epithelium/metabolism , Autophagy/drug effects , Cell Line , Humans , Iodates/pharmacology , Ligands , Molecular Targeted Therapy , Oligopeptides/chemistry , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/drug effects
19.
Org Lett ; 23(9): 3491-3495, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33886343

ABSTRACT

Fifteen N-aminoimidazolone (Nai) dipeptides having a variety of 5-position side-chain groups were synthesized by regioselective proline-catalyzed reactions of azopeptide and aldehyde components followed by acid-mediated dehydration of an aza-aspartate semialdehyde intermediate. The introduction of 5-aryl-Nai dipeptides into cluster of differentiation 36 receptor (CD36) peptide ligands has provided insight into the conformation responsible for binding affinity and anti-inflammatory activity.


Subject(s)
Azo Compounds/chemistry , Dipeptides/chemistry , Imidazoles/chemistry , Peptides/chemistry , Proline/chemistry , Biological Phenomena , Catalysis , Ligands , Molecular Conformation , Molecular Structure
20.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011297

ABSTRACT

The constrained dipeptide surrogates 5- and 7-hydroxy indolizidin-2-one N-(Boc)amino acids have been synthesized from L-serine as a chiral educt. A linear precursor ∆4-unsaturated (2S,8S)-2,8-bis[N-(Boc)amino]azelic acid was prepared in five steps from L-serine. Although epoxidation and dihydroxylation pathways gave mixtures of hydroxy indolizidin-2-one diastereomers, iodolactonization of the ∆4-azelate stereoselectively delivered a lactone iodide from which separable (5S)- and (7S)-hydroxy indolizidin-2-one N-(Boc)amino esters were synthesized by sequences featuring intramolecular iodide displacement and lactam formation. X-ray analysis of the (7S)-hydroxy indolizidin-2-one N-(Boc)amino ester indicated that the backbone dihedral angles embedded in the bicyclic ring system resembled those of the central residues of an ideal type II' ß-turn indicating the potential for peptide mimicry.


Subject(s)
Dipeptides/chemistry , Amino Acids/chemical synthesis , Amino Acids/chemistry , Chemistry Techniques, Synthetic , Indolizines/chemistry , Models, Molecular , Molecular Conformation , Molecular Mimicry , Molecular Structure , Organic Chemicals/chemistry , Peptides/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...