Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Gerontol ; 157: 111632, 2022 01.
Article in English | MEDLINE | ID: mdl-34822971

ABSTRACT

It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.


Subject(s)
Diet, Western , Physical Conditioning, Animal , Animals , Diet, Western/adverse effects , Inflammation , Mice , Motor Activity/physiology , Muscle, Skeletal , Physical Conditioning, Animal/physiology
3.
Nutr Healthy Aging ; 4(4): 323-333, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29951592

ABSTRACT

BACKGROUND: Recent studies suggest curcumin is a promising nutraceutical for improving important clinical and physiological markers of healthy aging, including motor and cognitive function. OBJECTIVE: To determine if curcumin supplementation improves motor and cognitive function in healthy middle-aged and older adults. METHODS: 39 healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of placebo (n = 19) or curcumin supplementation (2000 mg/day Longvida®; n = 20) with motor and cognitive function assessed at week 0 and 12. RESULTS: Using measures of the NIH Toolbox and other standardized tests, there were no changes in muscle strength and rate of torque development, dexterity, fatigability, mobility, endurance, and balance between the placebo and curcumin groups after 12 weeks (all P > 0.05). Additionally, there were no changes after 12 weeks of placebo and curcumin supplementation in measures of fluid cognitive ability, a cognitive domain that declines with age, including processing speed, executive function, working memory, and episodic memory (all P > 0.3). There were marginal changes in language, a measure of crystallized cognitive ability that is stable with age, following the intervention, wherein reading decoding increased 3% in the curcumin group (post: 2428±35 vs. pre: 2357±34, P = 0.003), but was unchanged in the placebo group (post: 2334±39 vs. pre: 2364±40, P = 0.07). CONCLUSIONS: Overall, 12 weeks of curcumin supplementation does not improve motor and cognitive functions in healthy middle-aged and older adults. It is possible that curcumin may enhance these functions in groups with greater baseline impairments than those studied here, including adults greater than 75 years of age and/or patients with clinical disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...