Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534481

ABSTRACT

CT protocols that diagnose COVID-19 vary in regard to the associated radiation exposure and the desired image quality (IQ). This study aims to evaluate CT protocols of hospitals participating in the RACOON (Radiological Cooperative Network) project, consolidating CT protocols to provide recommendations and strategies for future pandemics. In this retrospective study, CT acquisitions of COVID-19 patients scanned between March 2020 and October 2020 (RACOON phase 1) were included, and all non-contrast protocols were evaluated. For this purpose, CT protocol parameters, IQ ratings, radiation exposure (CTDIvol), and central patient diameters were sampled. Eventually, the data from 14 sites and 534 CT acquisitions were analyzed. IQ was rated good for 81% of the evaluated examinations. Motion, beam-hardening artefacts, or image noise were reasons for a suboptimal IQ. The tube potential ranged between 80 and 140 kVp, with the majority between 100 and 120 kVp. CTDIvol was 3.7 ± 3.4 mGy. Most healthcare facilities included did not have a specific non-contrast CT protocol. Furthermore, CT protocols for chest imaging varied in their settings and radiation exposure. In future, it will be necessary to make recommendations regarding the required IQ and protocol parameters for the majority of CT scanners to enable comparable IQ as well as radiation exposure for different sites but identical diagnostic questions.

2.
Eur J Radiol ; 148: 110181, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121331

ABSTRACT

PURPOSE: To analyze the quantitative and qualitative image quality of low-dose CT scans of the abdomen on a novel photon-counting detector CT (PCD-CT) in comparison with a traditional energy-integrating detector CT (EID-CT). METHODS: Consecutive patients with clinically indicated low-dose CT were scanned on a PCD-CT and compared with a BMI-matched EID-CT-cohort scanned during the same timeframe. Radiation dose, image noise, and signal-to-noise ratio (SNR) were measured for each patient. Furthermore, image quality and conspicuity of abdominal structures (adrenal glands, mesenteric vessels, ureters, and renal pelvis) were assessed on 5-point Likert-scales (1 = very poor quality/not detectable; 5 = excellent quality/differentiability). RESULTS: Twenty patients (mean age 46.2 [range: 19-77]; 13 men) were included. Image noise was significantly lower (24.9 ± 3.3 vs. 31.4 ± 5.6 SD HU, p < 0.001) and SNR significantly higher (2.1 ± 0.3 vs. 1.5 ± 0.4; p < 0.001) on the PCD-CT. Subjective image quality was substantially higher (4.0 ± 0.3 vs. 3.1 ± 0.6; p < 0.001) and conspicuity better for the renal pelvis, ureters, and mesenteric vessels on the PCD-CT. There was no significant difference in the conspicuity of the adrenal glands. With increasing BMI (1st-4th BMI quartile), noise increased, and SNR decreased more strongly on the EID-CT than on the PCD-CT (ΔNoise: 39% vs. 2%, ΔSNR: -33% vs. -7% for EID-CT vs. PCD-CT, respectively) while radiation dose increased comparably (70 vs. 59%). CONCLUSIONS: Low-dose CT scans of the abdomen performed on a novel PCD-CT exhibit reduced noise, higher SNR, increased subjective image quality, and superior conspicuity of abdominal fine structures compared to scans in comparable patients on an EID-CT.


Subject(s)
Photons , Tomography, X-Ray Computed , Abdomen/diagnostic imaging , Humans , Male , Middle Aged , Phantoms, Imaging , Radiation Dosage , Signal-To-Noise Ratio , Tomography, X-Ray Computed/methods
3.
Eur Radiol ; 25(5): 1285-93, 2015 May.
Article in English | MEDLINE | ID: mdl-25433415

ABSTRACT

OBJECTIVES: To compare 3.0 Tesla breast magnetic resonance imaging (MRI) with galactography for detection of benign and malignant causes of nipple discharge in patients with negative mammography and ultrasound. METHODS: We prospectively evaluated 56 breasts of 50 consecutive patients with nipple discharge who had inconspicuous mammography and ultrasound, using 3.0 Tesla breast MRI with a dedicated 16-channel breast coil, and then compared the results with galactography. Histopathological diagnoses and follow-ups were used as reference standard. Lesion size estimated on MRI was compared with the size at histopathology. RESULTS: Sensitivity and specificity of MRI vs. galactography for detecting pathologic findings were 95.7 % vs. 85.7 % and 69.7 % vs. 33.3 %, respectively. For the supposed concrete pathology based on MRI findings, the specificity was 67.6 % and the sensitivity 77.3 % (PPV 60.7 %, NPV 82.1 %). Eight malignant lesions were detected (14.8 %). The estimated size at breast MRI showed excellent correlation with the size at histopathology (Pearson's correlation coefficient 0.95, p < 0.0001). CONCLUSIONS: MRI of the breast at 3.0 Tesla is an accurate imaging test and can replace galactography in the workup of nipple discharge in patients with inconspicuous mammography and ultrasound. KEY POINTS: • Breast MRI is an excellent diagnostic tool for patients with nipple discharge. • MRI of the breast reveals malignant lesions despite inconspicuous mammography and ultrasound. • MRI of the breast has greater sensitivity and specificity than galactography. • Excellent correlation of lesion size measured at MRI and histopathology was found.


Subject(s)
Breast Diseases/diagnosis , Magnetic Resonance Imaging/methods , Nipple Aspirate Fluid , Nipples/pathology , Adult , Aged , Breast/pathology , Breast Diseases/pathology , Female , Humans , Mammography , Middle Aged , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography, Mammary
SELECTION OF CITATIONS
SEARCH DETAIL
...