Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(18): 18LT01, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32413872

ABSTRACT

High spatial resolution PET relies on having excellent depth-of-interaction (DOI) resolution and small detector elements. Depth-encoding in PET modules has traditionally been performed using dual-ended readout. In recent years, researchers have explored the feasibility of replacing the second readout array with a light guide at the entrance layer that introduces intercrystal light sharing in order to reduce cost and and make depth-encoding modules more compact. However, single-ended readout depth-encoding modules have suboptimal and non-uniform crystal separation and DOI performance due to the random light sharing patterns of the uniform light guide, resulting in degraded peformance along the edges and corners of the detector arrays. In this paper, we introduce and characterize a segmented light guide composed of an array of prism mirrors which introduce deterministic intercrystal light sharing in single-ended readout PET detectors. We determined the expected spatial performance of our modules with our light guide using optical ray tracing Monte Carlo simulations. We demonstrate that having controlled, deterministic light sharing improves both DOI and crystal identification performance, enabling uniform spatial performance throughout the detector array. Designed specifically for high resolution PET, our prismatoid light guide array can be used to build cost-effective total-body and organ-dedicated PET systems with single-ended readout depth-encoding modules.


Subject(s)
Gamma Rays , Monte Carlo Method , Photons , Positron-Emission Tomography/methods , Equipment Design , Positron-Emission Tomography/instrumentation
2.
J Nucl Med ; 61(10): 1528-1533, 2020 10.
Article in English | MEDLINE | ID: mdl-32111684

ABSTRACT

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high-resolution and high-sensitivity PET scanners. However, the current iteration of such detectors uses a uniform glass light-guide to achieve depth encoding, resulting in nonuniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended-readout PET detector module with a segmented light-guide composed of an array of prismatoids that introduce enhanced, deterministic light sharing. Methods: High-resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3 × 3 mm silicon photomultiplier pixels. Each scintillator array was coupled at the nonreadout side to a light-guide (one 4-to-1 module with a uniform glass light-guide, one 4-to-1 Prism-PET module, and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout, with the additional benefit of improved crystal identification. Flood histogram data were acquired using a 3-MBq 22Na source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules, whereas the uniform glass light-guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and an energy resolution of 13% FWHM were obtained in the uniform glass light-guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved a DOI resolution of 2.5 mm FWHM and an energy resolution of 9% FWHM. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light-guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ∼1-mm crystals), high sensitivity (20-mm-thick detectors and intercrystal Compton scatter recovery), good energy and timing resolutions (using polished crystals and after applying DOI correction), and compact size (depth encoding eliminates parallax error and permits smaller ring-diameter).


Subject(s)
Positron-Emission Tomography/methods , Equipment Design , Humans , Light , Lutetium , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL
...