Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mech Ageing Dev ; 220: 111943, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762036

ABSTRACT

This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.


Subject(s)
Cellular Senescence , Muscle, Smooth, Vascular , Sirtuin 1 , Humans , Cellular Senescence/physiology , Sirtuin 1/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Animals , Signal Transduction/physiology , Aging/metabolism , Aging/physiology , Nitric Oxide Synthase Type III/metabolism , Sirtuins/metabolism , Oxidative Stress , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Nitric Oxide/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
2.
Front Cardiovasc Med ; 10: 1157571, 2023.
Article in English | MEDLINE | ID: mdl-37342445

ABSTRACT

Background: We investigated the association between leukocyte telomere length, mitochondrial DNA copy number, and endothelial function in patients with aging-related cardiovascular disease (CVD). Methods: In total 430 patients with CVD and healthy persons were enrolled in the current study. Peripheral blood was drawn by routine venipuncture procedure. Plasma and peripheral blood mononuclear cells (PBMCs) were collected. Cell-free genomic DNA (cfDNA) and leukocytic genomic DNA (leuDNA) were extracted from plasma and PBMCs, respectively. Relative telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) were analyzed using quantitative polymerase chain reaction. Endothelial function was evaluated by measuring flow-mediated dilation (FMD). The correlation between TL of cfDNA (cf-TL), mtDNA-CN of cfDNA (cf-mtDNA), TL of leuDNA (leu-TL), mtDNA-CN of leuDNA (leu-mtDNA), age, and FMD were analyzed based on Spearman's rank correlation. The association between cf-TL, cf-mtDNA, leu-TL, leu-mtDNA, age, gender, and FMD were explored using multiple linear regression analysis. Results: cf-TL positively correlated with cf-mtDNA (r = 0.1834, P = 0.0273), and leu-TL positively correlated with leu-mtDNA (r = 0.1244, P = 0.0109). In addition, both leu-TL (r = 0.1489, P = 0.0022) and leu-mtDNA (r = 0.1929, P < 0.0001) positively correlated with FMD. In a multiple linear regression analysis model, both leu-TL (ß = 0.229, P = 0.002) and leu-mtDNA (ß = 0.198, P = 0.008) were positively associated with FMD. In contrast, age was inversely associated with FMD (ß = -0.426, P < 0.0001). Conclusion: TL positively correlates mtDNA-CN in both cfDNA and leuDNA. leu-TL and leu-mtDNA can be regarded as novel biomarkers of endothelial dysfunction.

3.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37115907

ABSTRACT

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Subject(s)
Receptors, Adrenergic, alpha-1 , rho-Associated Kinases , Humans , Mice , Animals , Middle Aged , Aged , Aged, 80 and over , rho-Associated Kinases/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Mesenteric Arteries/metabolism , Signal Transduction , Vasoconstriction , Myosins/metabolism , Phosphorylation , Myosin-Light-Chain Phosphatase/metabolism
4.
Front Physiol ; 14: 1099278, 2023.
Article in English | MEDLINE | ID: mdl-37057180

ABSTRACT

Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 µmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/- mice generated stretch-induced tone already at an age of 20-21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/- o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2-/-) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.

5.
FEBS Open Bio ; 13(1): 118-132, 2023 01.
Article in English | MEDLINE | ID: mdl-36352324

ABSTRACT

Recent evidence demonstrated that alterations in the QT interval duration on the ECG are not only determined by mutations in genes for ion channels, but also by modulators of ion channels. Changes in the QT interval duration beyond certain thresholds are pathological and can lead to sudden cardiac death. We here focus on the ion channel modulator nitric oxide synthase 1 adaptor protein (Nos1ap). Whole-cell patch-clamp measurements of a conditional transgenic mouse model exhibiting cardiac-specific Nos1ap over-expression revealed a Nos1ap-dependent increase of L-type calcium channel nitrosylation, which led to increased susceptibility to ventricular tachycardias associated with a decrease in QT duration and shortening of APD90 duration. Survival was significantly reduced (60% after 12 weeks vs. 100% in controls). Examination of the structural features of the hearts of transgenic mice revealed constant heart dimensions and wall thickness without abnormal fibrosis content or BNP production after 3 months of Nos1ap over-expression compared to controls. Nos1ap over-expression did not alter cGMP production or ROS concentration. Our study showed that myocardial over-expression of Nos1ap leads to the shortening of the QT interval and reduces the survival rate of transgenic animals, perhaps via the development of ventricular arrhythmias. We conclude that Nos1ap overexpression causes targeted subcellular localization of Nos1 to the CaV1.2 with a subsequent decrease of ADP90 and the QT interval. This causes detrimental cardiac arrhythmias in transgenic mice.


Subject(s)
Long QT Syndrome , Mice , Animals , Long QT Syndrome/genetics , Mice, Transgenic , Genotype , Electrocardiography , Arrhythmias, Cardiac , Adaptor Proteins, Signal Transducing/genetics
6.
Front Cardiovasc Med ; 9: 981333, 2022.
Article in English | MEDLINE | ID: mdl-36818914

ABSTRACT

Background: We investigated the pleiotropic effects of an angiotensin receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial perfusion in a rat model of coronary arteriogenesis, and performed comprehensive analyses to uncover the underlying molecular mechanisms. Methods: A rat model of coronary arteriogenesis was established by implanting an inflatable occluder on the left anterior descending coronary artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary collateral perfusion was measured by using a myocardial particle infusion technique. The putative ARNi-induced pro-arteriogenic effects were further investigated and compared with an angiotensin-converting enzyme inhibitor (ACEi). Expression of the membrane receptors and key enzymes in the natriuretic peptide system (NPS), renin-angiotensin-aldosterone system (RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblot assay, respectively. Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked immunosorbent assay, and mitochondrial DNA copy number was assessed by qPCR due to their roles in arteriogenesis. Furthermore, murine heart endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi) alone, or in combination with bradykinin receptor antagonists. MHEC5-T proliferation was analyzed by colorimetric assay. Results: The in vivo study showed that ARNis markedly improved coronary collateral perfusion, regulated the gene expression of KKS, and increased the concentrations of relevant pro-arteriogenic cytokines. The in vitro study demonstrated that NEPis significantly promoted MHEC5-T proliferation, which was diminished by bradykinin receptor antagonists. Conclusion: ARNis improve coronary collateral perfusion and exert pro-arteriogenic effects via the bradykinin receptor signaling pathway.

7.
Basic Clin Pharmacol Toxicol ; 130(1): 70-83, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34665520

ABSTRACT

This work explored the mechanism of augmented stress-induced vascular reactivity of senescent murine femoral arteries (FAs). Mechanical and pharmacological reactivity of young (12-25 weeks, y-FA) and senescent (>104 weeks, s-FAs) femoral arteries was measured by wire myography. Expression and protein phosphorylation of selected regulatory proteins were studied by western blotting. Expression ratio of the Exon24 in/out splice isoforms of the regulatory subunit of myosin phosphatase, MYPT1 (MYPT1-Exon24 in/out), was determined by polymerase chain reaction (PCR). While the resting length-tension relationship showed no alteration, the stretch-induced-tone increased to 8.3 ± 0.9 mN in s-FA versus only 4.6 ± 0.3 mN in y-FAs. Under basal conditions, phosphorylation of the regulatory light chain of myosin at S19 was 19.2 ± 5.8% in y-FA versus 49.2 ± 12.6% in s-FA. Inhibition of endogenous NO release raised tone additionally to 10.4 ± 1.2 mN in s-FA, whereas this treatment had a negligible effect in y-FAs (4.8 ± 0.3 mN). In s-FAs, reactivity to NO donor was augmented (pD2  = -4.5 ± 0.3 in y-FA vs. -5.2 ± 0.1 in senescent). Accordingly, in s-FAs, MYPT1-Exon24-out-mRNA, which is responsible for expression of the more sensitive to protein-kinase G, leucine-zipper-positive MYPT1 isoform, was increased. The present work provides evidence that senescent murine s-FA undergoes vascular remodelling associated with increases in stretch-activated contractility and sensitivity to NO/cGMP/PKG system.


Subject(s)
Femoral Artery/metabolism , Nitric Oxide/metabolism , Stress, Physiological/physiology , Vascular Remodeling/physiology , Age Factors , Animals , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Mice , Mice, Inbred C57BL , Myosin-Light-Chain Phosphatase/metabolism , Nitric Oxide Donors/pharmacology , Phosphorylation , Polymerase Chain Reaction , RNA, Messenger/metabolism , Vascular Stiffness/physiology
8.
J Gen Physiol ; 153(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34115104

ABSTRACT

The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1-/- compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1-/- than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.


Subject(s)
Calmodulin-Binding Proteins , Urinary Bladder , Animals , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Mice , Muscle Contraction , Muscle, Smooth/metabolism , Myosins/metabolism , Phosphorylation
9.
Gen Physiol Biophys ; 39(2): 157-168, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32329443

ABSTRACT

Cerebral blood supply is finely tuned by regulatory mechanisms depending on vessel caliber the disruption of which contributes to the development of diseases such as vascular dementia, Alzheimer's and Parkinson 's diseases. This study scopes whether cAMP-mimetic-ligands relax young and aged murine cerebral arteries, whether this relates to the activation of PKA or Epac signaling pathways and is changed with advanced age. The hormone Urocortin-1 relaxed submaximally contracted young and old basilar arteries with a similar pD2 and DMAX (~ -8.5 and ~ 90% in both groups). In permeabilized arteries, PKA activation by 6-Bnz-cAMP or Epac activation by 8-pCPT-2'- O-Me-cAMP also induced relaxation with pD2 of -6.3 vs. -5.8 in old for PKA-ligands, and -4.4 and -4.0 in old for Epac-ligands. Furthermore, aging significantly increased submaximal Ca2+-induced force. The effect of 8-pCPT-2'-O-Me-cAMP on intact arteries was attenuated by aging or nitric oxide synthase inhibition. No relaxing effect in both age-groups was observed after treatment with PKAactivator, Sp-6-Phe-cAMPS. In conclusion, our results suggest that in intact basilar arteries relaxation induced by cAMP-mimetics refers only to the activation of Epac and is impaired by smooth muscle and endothelial aging. The study presents an interesting option allowing therapeutic discrimination between both pathways, possibly for the exclusive activation of Epac in brain circulatory system.


Subject(s)
Aging , Basilar Artery/physiology , Cyclic AMP/physiology , Endothelium/physiology , Guanine Nucleotide Exchange Factors/physiology , Vasodilation , Animals , Cell Membrane Permeability , Cyclic AMP/analogs & derivatives , Cyclic AMP-Dependent Protein Kinases , Mice , Muscle, Smooth/physiology
10.
Physiol Rep ; 7(3): e13975, 2019 02.
Article in English | MEDLINE | ID: mdl-30740930

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder with high prevalence, and a major risk factor for macro- and microvascular abnormalities. This study was undertaken to explore the mechanisms of hypercontractility of murine femoral arteries (FA) obtained from mice with streptozotocin (STZ)-induced diabetes and its relation to the phosphorylation profile of the myosin phosphatase target subunit 1, MYPT1. The immunoreactivity of MYPT1 toward phospho-MYPT1-T696, MYPT1-T853, or MYPT1-S695, used as a read out for MYPT1 phosphorylation, has been studied by Western Blotting. Contractile activity of FA from control and STZ mice has been studied by wire myography. At basal conditions (no treatment), the immunoreactivity of MYPT1-T696/T853 was ~2-fold higher in the STZ arteries compared with controls. No changes in MYPT1-T696/853 phosphorylation were observed after stimulation with the Thromboxan-A2 analog, U46619. Neither basal nor U46619-stimulated phosphorylation of MYPT1 at S695 was affected by STZ treatment. Mechanical distensibility and basal tone of FA obtained from STZ animals were similar to controls. Maximal force after treatment of FA with the contractile agonists phenylephrine (10 µmol/L) or U46619 (1 µmol/L) was augmented in the arteries of STZ mice by ~2- and ~1.5-fold, respectively. In summary, our study suggests that development of a hypercontractile phenotype in murine FA in STZ diabetes is at least partially related to an increase in phosphorylation of MLCP at MYPT1-T696/853. Interestingly, the phosphorylation at S695 site was not altered in STZ-induced diabetes, supporting the view that S695 may serve as a sensor for mechanical activity which is not directly involved in tone regulation.


Subject(s)
Diabetes Mellitus, Experimental/enzymology , Diabetic Angiopathies/enzymology , Femoral Artery/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Vasoconstriction , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/physiopathology , Diabetic Angiopathies/chemically induced , Diabetic Angiopathies/physiopathology , Femoral Artery/drug effects , Femoral Artery/physiopathology , Male , Mice, Inbred C57BL , Phosphorylation , Signal Transduction , Streptozocin , Threonine , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
11.
Transl Stroke Res ; 10(5): 534-545, 2019 10.
Article in English | MEDLINE | ID: mdl-30467816

ABSTRACT

Development of vasogenic brain edema is a key event contributing to mortality after subarachnoid hemorrhage (SAH). The precise underlying mechanisms at the neurovascular level that lead to disruption of the blood-brain barrier (BBB) are still unknown. Activation of myosin light chain kinases (MLCK) may result in change of endothelial cell shape and opening of the intercellular gap with subsequent vascular leakage. Male C57Bl6 mice were subjected to endovascular perforation. Brain water content was determined by wet-dry ratio and BBB integrity by Evans-Blue extravasation. The specific MLCK inhibitor ML-7 was administered to the mice to determine the role of the contractile apparatus of the neurovascular unit in determining brain water content, BBB integrity, neurofunctional outcome, brain damage, and survival at 7 days after SAH. Inhibition of MLCK significantly reduced BBB permeability (Evans Blue extravasation - 28%) and significantly decreased edema formation in comparison with controls (- 2%). MLCK-treated mice showed reduced intracranial pressure (- 53%), improved neurological outcome at 24 h and 48 h after SAH, and reduced 7-day mortality. Tight junction proteins claudin-5 and zonula occludens-1 levels were not influenced by ML-7 at 24 h after insult. The effect of ML-7 on pMLC was confirmed in brain endothelial cell culture (bEnd.3 cells) subjected to 4-h oxygen-glucose deprivation. The present study indicates that MLCK contributes to blood-brain barrier dysfunction after SAH by a mechanism that does not involve modulation of tight junction protein levels, but via activation of the contractile apparatus of the endothelial cell skeleton. This underlying mechanism may be a promising target for the treatment of SAH.


Subject(s)
Blood-Brain Barrier/metabolism , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Subarachnoid Hemorrhage/metabolism , Animals , Blood-Brain Barrier/pathology , Brain Edema/complications , Brain Edema/metabolism , Endothelial Cells/pathology , Male , Mice, Inbred C57BL , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/pathology
12.
Circ Res ; 121(2): 149-161, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28588038

ABSTRACT

RATIONALE: Decreasing Ca2+ sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca2+. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca2+ sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown. OBJECTIVE: To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca2+ desensitization of VSM contractile apparatus. METHODS AND RESULTS: AMPK induced a slowly developing dilation at unchanged cytosolic Ca2+ levels in potassium chloride-constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein. CONCLUSIONS: AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca2+.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Actin Cytoskeleton/metabolism , Arteries/metabolism , Calcium/metabolism , Vascular Resistance/physiology , Vasodilation/physiology , AMP-Activated Protein Kinases/pharmacology , Actin Cytoskeleton/drug effects , Animals , Arteries/drug effects , Calcium/pharmacology , Cells, Cultured , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Vascular Resistance/drug effects , Vasoconstriction/drug effects , Vasoconstriction/physiology , Vasodilation/drug effects
13.
Pflugers Arch ; 469(5-6): 767-777, 2017 06.
Article in English | MEDLINE | ID: mdl-28190089

ABSTRACT

The Src tyrosine kinase family contributes to the signalling mechanism mediating serotonin (5-hydroxytryptamine (5-HT))-induced vasoconstriction. These kinases were reported to influence the calcium sensitivity of the contractile apparatus. Whether Src kinases affect also the intracellular calcium concentration during constriction of intact arteries is unknown. Thus, we tested the hypothesis that constriction of arteries is associated with a Src kinase-dependent alteration of the intracellular calcium concentration. Contractility of gracilis arteries of Wistar rats was studied using isometric and isobaric myography. The intracellular calcium concentration was measured simultaneously with tension by FURA-2 fluorimetry. Inhibition of Src kinases with 10 µM PP2, 30 µM dasatinib and 100 µM AZM 475271 resulted in a strong attenuation of 5-HT-induced contractions. Vessel incubation with 10 µM PP3, an inactive analogue of PP2, had no effect. Removal of the endothelium did not alter vessel contractile responses to 5-HT nor the action of the Src-kinase inhibitor PP2. The PP2-mediated inhibition of 5-HT-induced contraction was associated with a reduced response of [Ca2+]i to 5-HT. In particular, inhibition of Src kinases attenuates 5-HT-induced calcium influx as well as calcium release from intracellular stores. In contrast, the calcium sensitivity of the contractile apparatus and the filling state of the sarcoplasmic reticulum were not influenced by Src kinases during 5-HT-induced contractions. We conclude that Src kinase activation is a powerful mechanism to produce vasoconstriction of small skeletal muscle arteries of rats. This effect is endothelium-independent. The data further suggest that the action of c-Src kinases is associated with a change in the intracellular calcium concentration that involves Ca2+ entry and Ca2+ release pathways.


Subject(s)
Arteries/metabolism , Calcium Signaling , Muscle, Skeletal/blood supply , Serotonin/pharmacology , Vasoconstriction , src-Family Kinases/metabolism , Animals , Arteries/drug effects , Arteries/physiology , Male , Rats , Rats, Wistar
14.
J Cereb Blood Flow Metab ; 37(3): 1014-1029, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27193035

ABSTRACT

Aging causes major alterations of all components of the neurovascular unit and compromises brain blood supply. Here, we tested how aging affects vascular reactivity in basilar arteries from young (<10 weeks; y-BA), old (>22 months; o-BA) and old (>22 months) heterozygous MYPT1-T-696A/+ knock-in mice. In isometrically mounted o-BA, media thickness was increased by ∼10% while the passive length tension relations were not altered. Endothelial denudation or pan-NOS inhibition (100 µmol/L L-NAME) increased the basal tone by 11% in y-BA and 23% in o-BA, while inhibition of nNOS (1 µmol/L L-NPA) induced ∼10% increase in both ages. eNOS expression was ∼2-fold higher in o-BA. In o-BA, U46619-induced force was augmented (pEC50 ∼6.9 vs. pEC50 ∼6.5) while responsiveness to DEA-NONOate, electrical field stimulation or nicotine was decreased. Basal phosphorylation of MLC20-S19 and MYPT1-T-853 was higher in o-BA and was reversed by apocynin. Furthermore, permeabilized o-BA showed enhanced Ca2+-sensitivity. Old T-696A/+ BA displayed a reduced phosphorylation of MYPT1-T696 and MLC20, a lower basal tone in response to L-NAME and a reduced eNOS expression. The results indicate that the vascular hypercontractility found in o-BA is mediated by inhibition of MLCP and is partially compensated by an upregulation of endothelial NO release.


Subject(s)
Acetophenones/pharmacology , Aging , Basilar Artery/physiology , Muscle, Smooth, Vascular/physiology , Myosin-Light-Chain Phosphatase/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Animals , Enzyme Inhibitors , Mice , Myosin-Light-Chain Phosphatase/metabolism , Nitric Oxide Synthase Type I/metabolism , Phosphorylation , Protein Subunits/metabolism , Vasoconstriction
15.
Hypertension ; 66(1): 108-16, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26034200

ABSTRACT

The protective effects of 5'-AMP-activated protein kinase (AMPK) on the metabolic syndrome may include direct effects on resistance artery vasomotor function. However, the precise actions of AMPK on microvessels and their potential interaction are largely unknown. Thus, we set to determine the effects of AMPK activation on vascular smooth muscle tone and the underlying mechanisms. Resistance arteries isolated from hamster and mouse exhibited a pronounced endothelium-independent dilation on direct pharmacological AMPK activation by 2 structurally unrelated compounds (PT1 and A769662). The dilation was associated with a decrease of intracellular-free calcium [Ca(2+)]i in vascular smooth muscle cell. AMPK stimulation induced activation of BKCa channels as assessed by patch clamp studies in freshly isolated hamster vascular smooth muscle cell and confirmed by direct proof of membrane hyperpolarization in intact arteries. The BKCa channel blocker iberiotoxin abolished the hyperpolarization but only partially reduced the dilation and did not affect the decrease of [Ca(2+)]i. By contrast, the sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA) inhibitor thapsigargin largely reduced these effects, whereas combined inhibition of SERCA and BKCa channels virtually abolished them. AMPK stimulation significantly increased the phosphorylation of the SERCA modulator phospholamban at the regulatory T17 site. Stimulation of smooth muscle AMPK represents a new, potent vasodilator mechanism in resistance vessels. AMPK directly relaxes vascular smooth muscle cell by a decrease of [Ca(2+)]i. This is achieved by calcium sequestration via SERCA activation, as well as activation of BKCa channels. There is in part a mutual compensation of both calcium-lowering mechanisms. However, SERCA activation which involves an AMPK-dependent phosphorylation of phospholamban is the predominant mechanism in resistance vessels.


Subject(s)
AMP-Activated Protein Kinases/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/physiology , Muscle, Smooth, Vascular/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Vascular Resistance/drug effects , Vasodilation/drug effects , Vasomotor System/drug effects , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cricetinae , Enzyme Activation/drug effects , Indoles/pharmacology , Membrane Potentials/drug effects , Mesocricetus , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/physiology , Peptides/pharmacology , RNA, Messenger/biosynthesis , Thapsigargin/pharmacology , Vascular Resistance/physiology , Vasodilation/physiology , Vasomotor System/physiology
16.
Pediatr Res ; 76(3): 252-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24964231

ABSTRACT

BACKGROUND: Immature motility of the ileum may contribute to life-threatening diseases. Little is known about the normal biomechanics of the neonatal ileum in relation to the protein composition of its contractile machinery. METHODS: We analyzed the tissue architecture, the biomechanics in intact and ß-escin-permeabilized preparations, and the protein composition in neonatal (P0) and adult murine ileum. RESULTS: Muscle thickness of the P0 ileum was -50% of the adult ileum and passive compliance was higher. Carbachol- and KCl-elicited contractions were tonic rather than phasic as in the adult. Ca(2+) sensitivity was higher and relaxation rate was slower in ß-escin-permeabilized P0 compared with adult ileum. The expression level of ß-actin relative to α-actin was higher, and those of total actin, myosin, myosin light chain kinase, the catalytic subunit of myosin phosphatase and telokin were lower compared with the adult. The expression level of MYPT1 was similar, but P0 ileum expressed only the M133; the adult ileum also expressed the M130 isoform. CONCLUSION: The mechanical features and protein composition of the P0 ileum are similar to those of adult tonic smooth muscles. We propose that this is highly adaptive during fetal life allowing the small intestine to act predominantly as a container.


Subject(s)
Contractile Proteins/metabolism , Gastrointestinal Motility , Ileum/metabolism , Muscle Contraction , Muscle, Smooth/metabolism , Adaptation, Physiological , Age Factors , Animals , Animals, Newborn , Biomechanical Phenomena , Calcium/metabolism , Carbachol/pharmacology , Dose-Response Relationship, Drug , Gastrointestinal Motility/drug effects , Ileum/anatomy & histology , Ileum/drug effects , Ileum/growth & development , Male , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle, Smooth/anatomy & histology , Muscle, Smooth/drug effects , Muscle, Smooth/growth & development , Potassium Chloride/pharmacology , Time Factors
17.
Cardiovasc Res ; 99(4): 612-21, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23729664

ABSTRACT

AIMS: Functional remodelling takes place permanently in the circulatory system. Whether this process also affects the anti-contractile effect of the endothelium during vasoconstrictor action is unknown. Therefore, the hypothesis was tested that the impact of the anti-contractile effect of the endothelium on agonist-induced contractions changes during early postnatal development. METHODS AND RESULTS: We studied isometric contractions in saphenous arteries of young (1-2 weeks) and adult (2-3 months) rats. Real-time PCR and western blot were performed to evaluate the levels of mRNA expression and protein phosphorylation, respectively. In young but not in adult rats, methoxamine-induced contractions of endothelium-intact vessels exhibited a lower sensitivity compared with endothelium-denuded vessels. The endothelial influence on methoxamine-induced contractions in arteries of young rats was completely blocked by inhibition of endothelial NO-synthase (eNOS) and guanylate cyclase. NO-donor-induced vessel relaxations were not different in young and adult rats. The expression level of eNOS mRNA was prominently higher in arteries from young compared with adult rats. eNOS inhibition alone induced tonic contractions of endothelium-intact arteries from young but not from adult animals that were associated with corresponding changes in phosphorylation of the myosin regulatory light chains, the regulatory subunit of smooth muscle cell myosin light chain phosphatase, and vasodilator-stimulated phosphoprotein, the latter two being considered to be good markers of NO/sGC/PKG pathway activity. CONCLUSION: We demonstrated that agonist-induced contractions in arteries of young rats are attenuated by the endothelium possessing an active NO-pathway. The active NO-pathway is due to a constitutive eNOS activity that disappears with age.


Subject(s)
Endothelium, Vascular/physiology , Age Factors , Animals , Biological Factors/physiology , Chromones/pharmacology , Male , Methoxamine/pharmacology , Morpholines/pharmacology , Muscle, Smooth, Vascular/physiology , Nitric Oxide/physiology , Popliteal Artery/physiology , Rats , Rats, Wistar , Signal Transduction , Vasoconstriction/drug effects
18.
J Muscle Res Cell Motil ; 33(6): 471-83, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22711245

ABSTRACT

Nitrovasodilators and agonists, via an increase in intracellular cyclic nucleotide levels, can induce smooth muscle relaxation without a concomitant decrease in phosphorylation of the regulatory light chains (RLC) of myosin. However, since cyclic nucleotide-induced relaxation is associated with a decrease in intracellular [Ca(2+)], and hence, a decreased activity of MLCK, we tested the hypothesis that the site responsible for the elevated RLC phosphorylation is not Ser19. Smooth muscle strips from gastric fundus were isometrically contracted with ET-1 which induced an increase in monophosphorylation from 9 ± 1 % under resting conditions (PSS) to 36 ± 1 % determined with 2D-PAGE. Electric field stimulation induced a rapid, largely NO-mediated relaxation with a half time of 8 s, which was associated with an initial decline in RLC phosphorylation to 18 % within 2 s and a rebound to 34 % after 30 s whereas relaxation was sustained. In contrast, phosphorylation of RLC at Ser19 probed with phosphospecific antibodies declined in parallel with force. LC/MS and western blot analysis with phosphospecific antibodies against monophosphorylated Thr18 indicate that Thr18 is significantly monophosphorylated during sustained relaxation. We therefore suggest that (i) monophosphorylation of Thr18 rather than Ser19 is responsible for the phosphorylation rebound during sustained EFS-induced relaxation of mouse gastric fundus, and (ii) that relaxation can be ascribed to dephosphorylation of Ser19, the site considered to be responsible for regulation of smooth muscle tone.


Subject(s)
Muscle, Smooth/metabolism , Myosin Light Chains/metabolism , Nucleotides, Cyclic/metabolism , Animals , Male , Mice , Muscle Relaxation , Phosphorylation
19.
Physiology (Bethesda) ; 24: 342-56, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19996365

ABSTRACT

Next to changes in cytosolic [Ca(2+)], members of the Rho subfamily of small GTPases, in particular Rho and its effector Rho kinase, also known as ROK or ROCK, emerged as key regulators of smooth muscle function in health and disease. In this review, we will focus on the regulation of the contractile machinery by Rho/ROK signaling and its interaction with PKC and cyclic nucleotide signaling. We will briefly discuss the emerging evidence that remodeling of cortical actin is necessary for contraction.


Subject(s)
Monomeric GTP-Binding Proteins/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Actins/physiology , Animals , Calcium/metabolism , Signal Transduction/physiology , rho-Associated Kinases/physiology
20.
J Biol Chem ; 284(10): 6348-60, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19095646

ABSTRACT

Myosin light chain phosphatase plays a critical role in modulating smooth muscle contraction in response to a variety of physiologic stimuli. A downstream target of the RhoA/Rho-kinase and nitric oxide (NO)/cGMP/cyclic GMP-dependent kinase (cGKI) pathways, myosin light chain phosphatase activity reflects the sum of both calcium sensitization and desensitization pathways through phosphorylation and dephosphorylation of the myosin phosphatase targeting subunit (MYPT1). As cerebral blood flow is highly spatio-temporally modulated under normal physiologic conditions, severe perturbations in normal cerebral blood flow, such as in cerebral vasospasm, can induce neurological deficits. In nonpermeabilized cerebral vessels stimulated with U-46619, a stable mimetic of endogenous thromboxane A2 implicated in the etiology of cerebral vasospasm, we observed significant increases in contractile force, RhoA activation, regulatory light chain phosphorylation, as well as phosphorylation of MYPT1 at Thr-696, Thr-853, and surprisingly Ser-695. Inhibition of nitric oxide signaling completely abrogated basal MYPT1 Ser-695 phosphorylation and significantly increased and potentiated U-46619-induced MYPT1 Thr-853 phosphorylation and contractile force, indicating that NO/cGMP/cGKI signaling maintains basal vascular tone through active inhibition of calcium sensitization. Surprisingly, a fall in Ser-695 phosphorylation did not result in an increase in phosphorylation of the Thr-696 site. Although activation of cGKI with exogenous cyclic nucleotides inhibited thromboxane A2-induced MYPT1 membrane association, RhoA activation, contractile force, and regulatory light chain phosphorylation, the anticipated decreases in MYPT1 phosphorylation at Thr-696/Thr-853 were not observed, indicating that the vasorelaxant effects of cGKI are not through dephosphorylation of MYPT1. Thus, thromboxane A2 signaling within the intact cerebral vasculature induces "buffered" vasoconstrictions, in which both the RhoA/Rho-kinase calcium-sensitizing and the NO/cGMP/cGKI calcium-desensitizing pathways are activated.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Cerebral Arteries/metabolism , Signal Transduction/drug effects , Thromboxane A2/pharmacology , Vasoconstrictor Agents/pharmacokinetics , Vasospasm, Intracranial/metabolism , Animals , Blood Flow Velocity/drug effects , Cerebral Arteries/physiopathology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Enzyme Activation/drug effects , Male , Muscle Contraction/drug effects , Myosin-Light-Chain Phosphatase/metabolism , Nitric Oxide , Phosphorylation/drug effects , Protein Phosphatase 1/metabolism , Rabbits , Rats , Thromboxane A2/metabolism , Vasoconstriction/drug effects , Vasospasm, Intracranial/chemically induced , Vasospasm, Intracranial/physiopathology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...