Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21713, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065952

ABSTRACT

Despite the extensive literature on the retrieval of digestible starches from archaeological contexts, there are still significant concerns regarding their genuine origin and durability. Here, we propose a multi-analytical strategy to identify the authenticity of ancient starches retrieved from macrolithic tools excavated at Upper Paleolithic sites in the Pontic steppe. This strategy integrates the morphological discrimination of starches through optical microscopy and scanning electron microscopy with single starch chemo-profiling using Fourier transform infrared imaging and microscopy. We obtained evidence of aging and biomineralization in the use-related starches from Palaeolithic sites, providing a methodology to establish their ancient origin, assess their preservation status, and attempt their identification. The pivotal application of this multidisciplinar approach demonstrates that the macrolithic tools, from which starches were dislodged, were used for food-processing across the Pontic Steppe around 40,000 years ago during the earliest colonization of Eurasia by Homo sapiens.


Subject(s)
Archaeology , Starch , Humans , Starch/chemistry
2.
Environ Res ; 239(Pt 1): 117281, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827370

ABSTRACT

Lanthanides are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and eco-friendly recycling methods. In the present study, freeze-dried biomass of the polyextremophile Galdieria sulphuraria was employed to recover REEs from spent fluorescent lamps (FL) luminophores by pretreating the freeze-dried biomass with an acid solution to favour ion exchange and enhance the binding sites on the cell surface available for the metal ions. Lanthanides were extracted from the luminophores using sulfuric acid solutions according to standardised procedures, and the effect of biosorbent dosage (0.5-5 mg/ml) and biosorption time (5-60 min) were evaluated. The content of individual REEs in the luminophores and the resulting algal biomass were determined using inductively coupled plasma mass spectrometry (ICP-MS). The most abundant REE in the luminophores was yttrium (287.42 mg/g dm, 91.60% of all REEs), followed by europium (20.98 mg/g, 6.69%); cerium, gadolinium, terbium and lanthanum was in trace. The best biosorption performances were achieved after 5 min and at the lowest biosorbent dosage (0.5 mg/mL). The highest total metal amount corresponded to 41.61 mg/g dried mass, and yttrium was the most adsorbed metal (34.59 mg/g dm, 82.88%), followed by cerium (4.01 mg/g); all other metals were less than 2 mg/g. The rapidity of the biosorption process and the low biosorbent dosage required confirmed this microalga as a promising material for creating an eco-sustainable protocol for recycling REEs.


Subject(s)
Cerium , Metals, Rare Earth , Rhodophyta , Metals, Rare Earth/analysis , Yttrium , Metals/metabolism , Rhodophyta/metabolism
3.
Chemosphere ; 317: 137818, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640971

ABSTRACT

The recovering of trivalent Lanthanides from aqueous solutions, by biosorption process onto Galdieria sulphuraria lifeless cells, was investigated. Potentiometry, UV-Vis, FTIR-ATR spectroscopy and SEM-EDS analysis were used. All the experiments were performed at 25 °C, in 0.5 M NaCl. Ln3+ biosorption is greater in the 5-6 pH range with values ranging from 80 µmol/g to 130 µmol/g (dry weight). The adsorbed Ln3+ ions can be recovered at higher acidity (pH<1) and the biosorbent can be reused. Specific molecular interactions between Ln3+ ions and the functional groups on G. sulphuraria surface were highlighted. Particularly, proteins are involved if Ln3+=Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Tm3+, while Ce3+, Ho3+, Er3+ form bonds with carbohydrates. Finally, both proteins and carbohydrates are involved if Gd3+ and Yb3+. A Surface Complexation approach, with a good graphical fitting to potentiometric experimental collected data, was used to describe the biosorption mechanism. This study could be of great applicative utility for removing of trivalent actinides, from waste aqueous solutions, by biosorption. As well known the lanthanides were used as model to simulate the chemical behaviour of actinides in the same oxidation state.


Subject(s)
Actinoid Series Elements , Lanthanoid Series Elements , Rhodophyta , Lanthanoid Series Elements/chemistry , Ions
4.
Sci Rep ; 10(1): 10431, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591564

ABSTRACT

Reconstruction of last millennia Sea Surface Temperature (SST) evolution is challenging due to the difficulty retrieving good resolution marine records and to the several uncertainties in the available proxy tools. In this regard, the Roman Period (1 CE to 500 CE) was particularly relevant in the socio-cultural development of the Mediterranean region while its climatic characteristics remain uncertain. Here we present a new SST reconstruction from the Sicily Channel based in Mg/Ca ratios measured on the planktonic foraminifer Globigerinoides ruber. This new record is framed in the context of other previously published Mediterranean SST records from the Alboran Sea, Minorca Basin and Aegean Sea and also compared to a north Hemisphere temperature reconstruction. The most solid image that emerges of this trans-Mediterranean comparison is the persistent regional occurrence of a distinct warm phase during the Roman Period. This record comparison consistently shows the Roman as the warmest period of the last 2 kyr, about 2 °C warmer than average values for the late centuries for the Sicily and Western Mediterranean regions. After the Roman Period a general cooling trend developed in the region with several minor oscillations. We hypothesis the potential link between this Roman Climatic Optimum and the expansion and subsequent decline of the Roman Empire.

5.
Environ Chem Lett ; 7(1): 85-95, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20234880

ABSTRACT

We show the potentiality of coupling together different compound-specific isotopic analyses in a laboratory experiment, where (13)C-depleted leaf litter was incubated on a (13)C-enriched soil. The aim of our study was to identify the soil compounds where the C derived from three different litter species is retained. Three (13)C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L., delta(13)C(vsPDB) approximately -43 per thousand), differing in their degradability, were incubated on a C4 soil (delta(13)C(vsPDB) approximately -18 per thousand) under laboratory-controlled conditions for 8 months. At harvest, compound-specific isotope analyses were performed on different classes of soil compounds [i.e. phospholipids fatty acids (PLFAs), n-alkanes and soil pyrolysis products]. Linoleic acid (PLFA 18:2omega6,9) was found to be very depleted in (13)C (delta(13)C(vsPDB) approximately from -38 to -42 per thousand) compared to all other PLFAs (delta(13)C(vsPDB) approximately from -14 to -35 per thousand). Because of this, fungi were identified as the first among microbes to use the litter as source of C. Among n-alkanes, long-chain (C27-C31) n-alkanes were the only to have a depleted delta(13)C. This is an indication that not all of the C derived from litter in the soil was transformed by microbes. The depletion in (13)C was also found in different classes of pyrolysis products, suggesting that the litter-derived C is incorporated in less or more chemically stable compounds, even only after 8 months decomposition.

6.
Oecologia ; 154(1): 155-66, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17665218

ABSTRACT

During microbial breakdown of leaf litter a fraction of the C lost by the litter is not released to the atmosphere as CO(2) but remains in the soil as microbial byproducts. The amount of this fraction and the factors influencing its size are not yet clearly known. We performed a laboratory experiment to quantify the flow of C from decaying litter into the soil, by means of stable C isotopes, and tested its dependence on litter chemical properties. Three sets of (13)C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L.) were incubated in the laboratory in jars containing (13)C-enriched soil (i.e. formed C4 vegetation). Four jars containing soil only were used as a control. Litter chemical properties were measured using thermogravimetry (Tg) and pyrolysis-gas chromatography/mass spectrometry-combustion interface-isotope ratio mass spectrometry (Py-GC/MS-C-IRMS). The respiration rates and the delta(13)C of the respired CO(2) were measured at regular intervals. After 8 months of incubation, soils incubated with both L. styraciflua and C. canadensis showed a significant change in delta(13)C (delta(13)C(final) = -20.2 +/- 0.4 per thousand and -19.5 +/- 0.5 per thousand, respectively) with respect to the initial value (delta(13)C(initial) = -17.7 +/- 0.3 per thousand); the same did not hold for soil incubated with P. taeda (delta(13)C(final:)-18.1 +/- 0.5 per thousand). The percentages of litter-derived C in soil over the total C loss were not statistically different from one litter species to another. This suggests that there is no dependence of the percentage of C input into the soil (over the total C loss) on litter quality and that the fractional loss of leaf litter C is dependent only on the microbial assimilation efficiency. The percentage of litter-derived C in soil was estimated to be 13 +/- 3% of total C loss.


Subject(s)
Biodegradation, Environmental , Carbon/chemistry , Plant Leaves/chemistry , Carbon/metabolism , Carbon Isotopes , Ecosystem , Oxygen Consumption , Soil , Soil Microbiology
7.
J Mass Spectrom ; 40(8): 1104-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16041730

ABSTRACT

A systematic analysis of efficiency, reproducibility and accuracy of cryogenic purification of CO(2) from air samples for isotopic analyses is presented. The technical characteristics of the cryogenic line are given in detail. To study the cryogenic process, three different operating parameters are considered: flow rate of the gas entering the line, pressure of the gas in the line, and CO(2)-trap shape. Experimental results demonstrate that efficiency, reproducibility and accuracy strongly depend on the CO(2)trap shape. Moreover, a dependence of reproducibility and accuracy on the flow rate of the gas is found, but not on its pressure. High precision (< or =0.02 per thousand for delta(13)C and < or =0.05 per thousand for delta(18)O) and good accuracy (<0.09 per thousand for delta(13)C and <0.14 per thousand for delta(18)O) is achieved after applying the N(2)O correction.

SELECTION OF CITATIONS
SEARCH DETAIL
...