Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 964656, 2022.
Article in English | MEDLINE | ID: mdl-36119607

ABSTRACT

Blueberry is well-recognized as a healthy fruit with functionality derived largely from anthocyanin and chlorogenic acid. Despite their importance, no study to date has evaluated the genetic basis of these bioactives in blueberries and their relationship with fruit quality traits. Hence, to fill this gap, a mapping population including 196 F1 individuals was phenotyped for anthocyanin and chlorogenic acid concentration and fruit quality traits (titratable acidity, pH, and total soluble solids) over 3 years and data were used for QTL mapping and correlation analysis. Total soluble solids and chlorogenic acid were positively correlated with glycosylated anthocyanin and total anthocyanin, respectively, indicating that parallel selection for these traits is possible. Across all the traits, a total of 188 QTLs were identified on chromosomes 1, 2, 4, 8, 9, 11 and 12. Notably, four major regions with overlapping major-effect QTLs were identified on chromosomes 1, 2, 4 and 8, and were responsible for acylation and glycosylation of anthocyanins in a substrate and sugar donor specific manner. Through comparative transcriptome analysis, multiple candidate genes were identified for these QTLs, including glucosyltransferases and acyltransferases. Overall, the study provides the first insights into the genetic basis controlling anthocyanins accumulation and composition, chlorogenic acid and fruit quality traits, and establishes a framework to advance genetic studies and molecular breeding for anthocyanins in blueberry.

2.
Hortic Res ; 9: uhac083, 2022.
Article in English | MEDLINE | ID: mdl-35611183

ABSTRACT

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

3.
Genetics ; 210(4): 1497-1508, 2018 12.
Article in English | MEDLINE | ID: mdl-30352832

ABSTRACT

Carrots are among the richest sources of provitamin A carotenes in the human diet, but genetic variation in the carotenoid pathway does not fully explain the high levels of carotenoids in carrot roots. Using a diverse collection of modern and historic domesticated varieties, and wild carrot accessions, an association analysis for orange pigmentation revealed a significant genomic region that contains the Or gene, advancing it as a candidate for carotenoid presence in carrot. Analysis of sequence variation at the Or locus revealed a nonsynonymous mutation cosegregating with carotenoid content. This mutation was absent in all wild carrot samples and nearly fixed in all orange domesticated samples. Or has been found to control carotenoid presence in other crops but has not previously been described in carrot. Our analysis also allowed us to more completely characterize the genetic structure of carrot, showing that the Western domesticated carrot largely forms one genetic group, despite dramatic phenotypic differences among market classes. Eastern domesticated and wild accessions form a second group, which reflects the recent cultivation history of carrots in Central Asia. Other wild accessions form distinct geographic groups, particularly on the Iberian peninsula and in Northern Africa. Using genome-wide Fst , nucleotide diversity, and the cross-population composite likelihood ratio, we analyzed the genome for regions putatively under selection during domestication and identified 12 regions that were significant for all three methods of detection, one of which includes the Or gene. The Or domestication allele appears to have been selected after the initial domestication of yellow carrots in the East, near the proposed center of domestication in Central Asia. The rapid fixation of the Or domestication allele in almost all orange and nonorange carrots in the West may explain why it has not been found with less genetically diverse mapping populations.


Subject(s)
Carotenoids/genetics , Daucus carota/genetics , Phylogeny , Pigmentation/genetics , Alleles , Asia , Chromosome Mapping , Daucus carota/metabolism , Europe , Genetics, Population , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
4.
PLoS One ; 11(12): e0167865, 2016.
Article in English | MEDLINE | ID: mdl-27959910

ABSTRACT

Increased use of intellectual property rights over plant germplasm has led to a complicated landscape for exchange among plant breeders. Our goal was to examine phenotypic and genotypic diversity present in commercially available carrot (Daucus carota L. var. sativus) germplasm in relation to the freedom to operate-the ability for plant breeders to access and use crop genetic diversity. A collection of 140 commercially available carrot cultivars were grown in replicated field trials in the Madison, WI area in 2013 and 2014. Phenotypic measurements were recorded for leaf and root characteristics. Illumina sequencing was used to conduct genotyping by sequencing analysis on all cultivars to understand the range of genetic diversity present. Additionally, the intellectual property rights associated with each cultivar was noted to determine the freedom to operate. We found that although one-third of the commercially available US carrot cultivars in our study are restricted through some form of intellectual property rights, the genetic and phenotypic variability of the protected cultivars does not represent a completely separate group from the available material. Phenotypic analyses including ANOVA and principal components analysis, suggest that many of the traits differed significantly based on market class, but not by whether the cultivar had freedom to operate. The principal components and Fst analyses on the genotyping by sequencing data revealed that carrot market classes (Fst = 0.065) and freedom to operate classes (Fst = 0.023) were not genetically distinct, and that principle components 1 and 2 account for only 10.1% of the total genotypic variation, implying that cultivated carrot germplasm in the US forms an unstructured population. Our findings suggest that the genetic diversity present in carrot cultivars that have freedom to operate is potentially large enough to support carrot breeding efforts in most market classes given present levels of intellectual property protection.


Subject(s)
Daucus carota/genetics , Genetic Variation , Genotype , Phenotype , Plant Breeding/legislation & jurisprudence , Vegetables/genetics , Daucus carota/economics , Intellectual Property , Plant Breeding/economics , United States , Vegetables/economics
5.
PLoS Biol ; 14(4): e1002441, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27093567

ABSTRACT

For millennia, seeds have been freely available to use for farming and plant breeding without restriction. Within the past century, however, intellectual property rights (IPRs) have threatened this tradition. In response, a movement has emerged to counter the trend toward increasing consolidation of control and ownership of plant germplasm. One effort, the Open Source Seed Initiative (OSSI, www.osseeds.org), aims to ensure access to crop genetic resources by embracing an open source mechanism that fosters exchange and innovation among farmers, plant breeders, and seed companies. Plant breeders across many sectors have taken the OSSI Pledge to create a protected commons of plant germplasm for future generations.


Subject(s)
Crops, Agricultural/genetics , Seeds , Crops, Agricultural/embryology , Intellectual Property
6.
Hortic Res ; 1: 14015, 2014.
Article in English | MEDLINE | ID: mdl-26504534

ABSTRACT

Carrot roots (Daucus carota L. var. sativa) produce tocochromanol compounds, collectively known as vitamin E. However, little is known about their types and amounts. Here we determined the range and variation in types and amounts of tocochromanols in a variety of cultivated carrot accessions throughout carrot postharvest storage and reproductive stages and in wild-type roots (Daucus carota L. var. carota). Of eight possible tocochromanol compounds, we detected and quantified α-, and the combined peak for ß- and γ- forms of tocopherols and tocotrienols. Significant variation in amounts of tocochromanol compounds was observed across accessions and over time. Large increases in α-tocopherol were noted during both reproductive growth and the postharvest stages. The variation of tocochromanols in carrot root tissue provides useful information for future research seeking to understand the role of these compounds in carrot root tissue or to breed varieties with increased levels of these compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...