Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 609(7925): 89-93, 2022 09.
Article in English | MEDLINE | ID: mdl-35978190

ABSTRACT

Ongoing deforestation poses a major threat to biodiversity1,2. With limited resources and imminent threats, deciding when as well as where to conserve is a fundamental question. Here we use a dynamic optimization approach to identify an optimal sequence for the conservation of plant species in 458 forested ecoregions globally over the next 50 years. The optimization approach includes species richness in each forested ecoregion, complementarity of species across ecoregions, costs of conservation that rise with cumulative protection in an ecoregion, the existing degree of protection, the rate of deforestation and the potential for reforestation in each ecoregion. The optimal conservation strategy for this formulation initially targets a small number of ecoregions where further deforestation leads to large reductions in species and where the costs of conservation are low. In later years, conservation efforts spread to more ecoregions, and invest in both expanded protection of primary forest and reforestation. The largest gains in species conservation come in Melanesia, South and Southeast Asia, the Anatolian peninsula, northern South America and Central America. The results highlight the potentially large gains in conservation that can be made with carefully targeted investments.


Subject(s)
Conservation of Natural Resources , Forestry , Forests , Biodiversity , Central America , Conservation of Natural Resources/methods , Forestry/methods , South America , Time Factors , Trees/classification , Trees/growth & development
2.
J Environ Manage ; 233: 30-38, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30554022

ABSTRACT

A central challenge in the Mississippi River Basin is how to continue to support profitable agricultural production, provide water supply, flood control, transportation, and other benefits, while reducing the current burden of environmental degradation. Several practices have been shown to reduce nutrient runoff and water pollution, and improve soil fertility, while often yielding profits for farmers. Yet many of these beneficial practices remain underutilized. Participants at an expert workshop identified five candidate financial mechanisms that could increase adoption of these beneficial farming practices in four focal Midwest states in the next five years: crop insurance premium subsidies, transformation of the private service provider business model, expansion and targeting of 2019 U.S. Farm Bill funding, development of new state funds, and direction of post-disaster federal funds towards habitat restoration, particularly in floodplains. This study provides rough approximations of the change in nutrient runoff and greenhouse gas (GHG) emissions, the annualized costs, and the nutrient and GHG reductions per dollar likely to result from deployment of each financial mechanism. Based upon these approximations, the adoption of these programs could reduce annual nitrate flows at the outlet of the Ohio and Upper Mississippi River Basins by 25%, surpassing the intermediate 2025 target (20% reduction) and achieving more than half of the long-term target (45% reduction) set by the Mississippi River/Gulf of Mexico Hypoxia Task Force. These approximations also illustrate that these five mechanisms could provide the same GHG reductions (∼43 Tg CO2e yr-1) as taking 12 coal-fired energy plants offline. The total cost of these five financial mechanisms is estimated at ∼$2.6 billion, or 64 g of nitrates and ∼17 kg of CO2e per dollar spent. These proposed solutions all face political, financial, cultural or institutional challenges, but with industry support, creative political action, and continued communication of both private and public benefits, they can create meaningful nutrient reductions and rebuild soils by 2022.


Subject(s)
Motivation , Soil , Gulf of Mexico , Mississippi , Ohio
SELECTION OF CITATIONS
SEARCH DETAIL
...