Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Trauma Acute Care Surg ; 96(1): 101-108, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38057963

ABSTRACT

BACKGROUND: Early platelet transfusion is associated with reduced mortality in traumatic hemorrhage. However, platelet usage is severely limited because of the challenges of donor availability, platelet portability, and storage. Here, we report on a bioinspired synthetic platelet (SP) nanoconstruct that utilizes liposome surface-decoration with peptides that mimic injury site-specific platelet adhesion to von Willebrand Factor and collagen, and fibrinogen-mediated platelet aggregation. Synthetic platelet has previously shown promising hemostatic outcomes in vitro and in vivo. Here, we evaluated hemostasis and hemodynamic effects of SP in a rabbit model of abdominal hemorrhage. METHODS: Twenty-three adult male New Zealand white rabbits (2.5-3.5 kg) were treated with either buffer, control particles (CPs), or SP. Under general anesthesia with invasive monitoring, rabbits underwent laparotomy with combined splenic and hepatic injury. Hemodynamics were monitored for 30 minutes and blood loss was quantified. Blood counts, aggregometry, catecholamine and platelet factor 4 (PF4) assays were performed at multiple timepoints. Analysis used analysis of variance and post hoc Tukey testing with α = 0.05. RESULTS: Rabbits in the SP (n = 7) group had significantly lower weight-normalized blood loss compared with both buffer (n = 8) and CP (n = 8) animals (21.1 vs. 33.2 vs. 40.4 g/kg, p < 0.001). Synthetic platelet-treated animals had higher systolic blood pressure area under curve compared with buffer- and CP-treated animals (1567 vs. 1281 vs. 1109 mm Hg*min, p = 0.006), although post hoc differences were only significant for the SP/CP comparison ( p = 0.005). Platelet counts, catecholamine levels, PF4, and aggregometry were similar between groups. CONCLUSION: Synthetic platelet treatment significantly reduced blood loss and improved hemodynamics in a rabbit abdominal hemorrhage model. Synthetic platelet has potential as an intravenous hemostatic platelet surrogate with donor-independent availability and scalable manufacture.


Subject(s)
Hemostatics , Nanoparticles , Rabbits , Male , Animals , Blood Platelets , Hemostasis , Hemorrhage/therapy , Hemostatics/pharmacology , Hemostatics/therapeutic use , Hemodynamics , Catecholamines/pharmacology
2.
J Surg Res ; 291: 167-175, 2023 11.
Article in English | MEDLINE | ID: mdl-37422958

ABSTRACT

INTRODUCTION: Prolonged inflammation and infection in burns may cause inadequate healing. Platelet granules contain anti-inflammatory mediators that impact wound healing. Synthetic platelets (SPs) avoid portability and storage difficulties of natural platelets and can be loaded with bioactive agents. We evaluated wound healing outcomes in deep partial-thickness (DPT) burns treated topically with SP loaded with antibiotics. MATERIALS AND METHODS: Thirty DPT burns were created on the dorsum of two Red Duroc hybrid pigs. Six wounds were randomized into five groups: SP alone, SP loaded with gentamicin vesicles, SP with gentamicin mixture, vehicle control (saline), or dry gauze. Wounds were assessed from postburn days 3-90. Primary outcome was re-epithelialization percentage at postburn day 28. Secondary outcomes included wound contraction percentage, superficial blood flow relative to normal skin controls, and bacterial load score. RESULTS: Results showed that re-epithelialization with the standard of care (SOC) was 98%, SP alone measured 100%, SP loaded with gentamicin vesicles was 100%, and SP with gentamicin mixture was 100%. Wound contraction was 5.7% in the SOC and was ∼10% in both the SP loaded with gentamicin vesicles and SP with gentamicin mixture groups. Superficial blood flow in the SOC was 102.5%, SP alone was 170%, the SP loaded was 155%, and gentamicin mixture 162.5%. Bacterial load score in the SOC was 2.2/5.0 and was significantly less at 0.8/5.0 in SP loaded with gentamicin vesicles (P > 0.05). SP and gentamicin mixture scored 2.7 and 2.3/5.0. CONCLUSIONS: Topical SP treatment did not significantly improve outcomes. However, SP loaded with gentamicin-infused vesicles decreased bacterial load.


Subject(s)
Burns , Gentamicins , Animals , Swine , Blood Platelets , Skin , Wound Healing , Burns/drug therapy
3.
Blood ; 141(23): 2891-2900, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36928925

ABSTRACT

The lack of innovation in von Willebrand disease (VWD) originates from many factors including the complexity and heterogeneity of the disease but also from a lack of recognition of the impact of the bleeding symptoms experienced by patients with VWD. Recently, a few research initiatives aiming to move past replacement therapies using plasma-derived or recombinant von Willebrand factor (VWF) concentrates have started to emerge. Here, we report an original approach using synthetic platelet (SP) nanoparticles for the treatment of VWD type 2B (VWD-2B) and severe VWD (type 3 VWD). SP are liposomal nanoparticles decorated with peptides enabling them to concomitantly bind to collagen, VWF, and activated platelets. In vitro, using various microfluidic assays, we show the efficacy of SPs to improve thrombus formation in VWF-deficient condition (with human platelets) or using blood from mice with VWD-2B and deficient VWF (VWF-KO, ie, type 3 VWD). In vivo, using a tail-clip assay, SP treatment reduced blood loss by 35% in mice with VWD-2B and 68% in mice with VWF-KO. Additional studies using nanoparticles decorated with various combinations of peptides demonstrated that the collagen-binding peptide, although not sufficient by itself, was crucial for SP efficacy in VWD-2B; whereas all 3 peptides appeared necessary for mice with VWF-KO. Clot imaging by immunofluorescence and scanning electron microscopy revealed that SP treatment of mice with VWF-KO led to a strong clot, similar to those obtained in wild-type mice. Altogether, our results show that SP could represent an attractive therapeutic alternative for VWD, especially considering their long half-life and stability.


Subject(s)
Hemostatics , von Willebrand Disease, Type 3 , von Willebrand Diseases , Humans , Animals , Mice , von Willebrand Diseases/complications , von Willebrand Diseases/therapy , von Willebrand Factor/metabolism , Blood Platelets/metabolism , Hemostatics/therapeutic use , von Willebrand Disease, Type 3/metabolism , Disease Models, Animal , Hemorrhage/metabolism
4.
ACS Nano ; 16(10): 16292-16313, 2022 10 25.
Article in English | MEDLINE | ID: mdl-35916497

ABSTRACT

Severe hemorrhage associated with trauma, surgery, and congenital or drug-induced coagulopathies can be life-threatening and requires rapid hemostatic management via topical, intracavitary, or intravenous routes. For injuries that are not easily accessible externally, intravenous hemostatic approaches are needed. The clinical gold standard for this is transfusion of blood products, but due to donor dependence, specialized storage requirements, high risk of contamination, and short shelf life, blood product use faces significant challenges. Consequently, recent research efforts are being focused on designing biosynthetic intravenous hemostats, using intravenous nanoparticles and polymer systems. Here we report on the design and evaluation of thrombin-loaded injury-site-targeted lipid nanoparticles (t-TLNPs) that can specifically localize at an injury site via platelet-mimetic anchorage to the von Willebrand factor (vWF) and collagen and directly release thrombin via diffusion and phospholipase-triggered particle destabilization, which can locally augment fibrin generation from fibrinogen for hemostatic action. We evaluated t-TLNPs in vitro in human blood and plasma, where hemostatic defects were created by platelet depletion and anticoagulation. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM)-based studies of clot viscoelasticity, and BioFlux-based real-time imaging of fibrin generation under simulated vascular flow conditions confirmed that t-TLNPs can restore fibrin in hemostatic dysfunction settings. Finally, the in vivo feasibility of t-TLNPs was tested by prophylactic administration in a tail-clip model and emergency administration in a liver-laceration model in mice with induced hemostatic defects. Treatment with t-TLNPs was able to significantly reduce bleeding in both models. Our studies demonstrate an intravenous nanomedicine approach for injury-site-targeted direct delivery of thrombin to augment hemostasis.


Subject(s)
Hemostatics , Thrombin , Humans , Mice , Animals , von Willebrand Factor , Nanomedicine , Hemostasis , Blood Platelets , Fibrin , Hemostatics/pharmacology , Hemostatics/therapeutic use , Fibrinogen , Polymers , Anticoagulants
5.
Sci Transl Med ; 14(629): eabb8975, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35080915

ABSTRACT

Treatment of bleeding disorders using transfusion of donor-derived platelets faces logistical challenges due to their limited availability, high risk of contamination, and short (5 to 7 days) shelf life. These challenges could be potentially addressed by designing platelet mimetics that emulate the adhesion, aggregation, and procoagulant functions of platelets. To this end, we created liposome-based platelet-mimicking procoagulant nanoparticles (PPNs) that can expose the phospholipid phosphatidylserine on their surface in response to plasmin. First, we tested PPNs in vitro using human plasma and demonstrated plasmin-triggered exposure of phosphatidylserine and the resultant assembly of coagulation factors on the PPN surface. We also showed that this phosphatidylserine exposed on the PPN surface could restore and enhance thrombin generation and fibrin formation in human plasma depleted of platelets. In human plasma and whole blood in vitro, PPNs improved fibrin stability and clot robustness in a fibrinolytic environment. We then tested PPNs in vivo in a mouse model of thrombocytopenia where treatment with PPNs reduced blood loss in a manner comparable to treatment with syngeneic platelets. Furthermore, in rat and mouse models of traumatic hemorrhage, treatment with PPNs substantially reduced bleeding and improved survival. No sign of systemic or off-target thrombotic risks was observed in the animal studies. These findings demonstrate the potential of PPNs as a platelet surrogate that should be further investigated for the management of bleeding.


Subject(s)
Blood Platelets , Nanoparticles , Animals , Hemorrhage , Hemostasis/physiology , Mice , Models, Animal , Rats
6.
Platelets ; 33(1): 35-47, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-34455908

ABSTRACT

Platelets are anucleate blood cells produced from megakaryocytes predominantly in the bone marrow and released into blood circulation at a healthy count of 150,000-400,00 per µL and circulation lifespan of 7-9 days. Platelets are the first responders at the site of vascular injury and bleeding, and participate in clot formation via injury site-specific primary mechanisms of adhesion, activation and aggregation to form a platelet plug, as well as secondary mechanisms of augmenting coagulation via thrombin amplification and fibrin generation. Platelets also secrete various granule contents that enhance these mechanisms for clot growth and stability. The resultant clot seals the injury site to stanch bleeding, a process termed as hemostasis. Due to this critical role, a reduction in platelet count or dysregulation in platelet function is associated with bleeding risks and hemorrhagic complications. These scenarios are often treated by prophylactic or emergency transfusion of platelets. However, platelet transfusions face significant challenges due to limited donor availability, difficult portability and storage, high bacterial contamination risks, and very short shelf life (~5-7 days). These are currently being addressed by a robust volume of research involving reduced temperature storage and pathogen reduction processes on donor platelets to improve shelf-life and reduce contamination, as well as bioreactor-based approaches to generate donor-independent platelets from stem cells in vitro. In parallel, a complementary research field has emerged that involves the design of artificial platelets utilizing biosynthetic particle constructs that functionally emulate various hemostatic mechanisms of platelets. Here, we provide a comprehensive review of the history and the current state-of-the-art artificial platelet approaches, along with discussing the translational opportunities and challenges.


Subject(s)
Blood Platelets/metabolism , Platelet Transfusion/methods , Humans
7.
J Thromb Haemost ; 17(10): 1632-1644, 2019 10.
Article in English | MEDLINE | ID: mdl-31220416

ABSTRACT

BACKGROUND: Trauma-associated hemorrhage and coagulopathy remain leading causes of mortality. Such coagulopathy often leads to a hyperfibrinolytic phenotype where hemostatic clots become unstable because of upregulated tissue plasminogen activator (tPA) activity. Tranexamic acid (TXA), a synthetic inhibitor of tPA, has emerged as a promising drug to mitigate fibrinolysis. TXA is US Food and Drug Administration-approved for treating heavy menstrual and postpartum bleeding, and has shown promise in trauma treatment. However, emerging reports also implicate TXA for off-target systemic coagulopathy, thromboembolic complications, and neuropathy. OBJECTIVE: We hypothesized that targeted delivery of TXA to traumatic injury site can enable its clot-stabilizing action site-selectively, to improve hemostasis and survival while avoiding off-target effects. To test this, we used liposomes as a model delivery vehicle, decorated their surface with a fibrinogen-mimetic peptide for anchorage to active platelets within trauma-associated clots, and encapsulated TXA within them. METHODS: The TXA-loaded trauma-targeted nanovesicles (T-tNVs) were evaluated in vitro in rat blood, and then in vivo in a liver trauma model in rats. TXA-loaded control (untargeted) nanovesicles (TNVs), free TXA, or saline were studied as comparison groups. RESULTS: Our studies show that in vitro, the T-tNVs could resist lysis in tPA-spiked rat blood. In vivo, T-tNVs maintained systemic safety, significantly reduced blood loss and improved survival in the rat liver hemorrhage model. Postmortem evaluation of excised tissue from euthanized rats confirmed systemic safety and trauma-targeted activity of the T-tNVs. CONCLUSION: Overall, the studies establish the potential of targeted TXA delivery for safe injury site-selective enhancement and stabilization of hemostatic clots to improve survival in trauma.


Subject(s)
Antifibrinolytic Agents/administration & dosage , Blood Platelets/drug effects , Hemorrhage/prevention & control , Hemostasis/drug effects , Liver Diseases/prevention & control , Tranexamic Acid/administration & dosage , Wounds and Injuries/drug therapy , Animals , Antifibrinolytic Agents/blood , Blood Platelets/metabolism , Disease Models, Animal , Fibrinogen/metabolism , Hemorrhage/blood , Hemorrhage/etiology , Liposomes , Liver Diseases/blood , Liver Diseases/etiology , Molecular Mimicry , Nanoparticles , Peptides/blood , Rats, Sprague-Dawley , Tranexamic Acid/blood , Wounds and Injuries/blood , Wounds and Injuries/complications
8.
J Trauma Acute Care Surg ; 84(6): 917-923, 2018 06.
Article in English | MEDLINE | ID: mdl-29538234

ABSTRACT

BACKGROUND: Clinical resuscitative treatment of traumatic hemorrhage involves transfusion of RBC, platelets and plasma in controlled ratios. However, use of such blood components, especially platelets, present many challenges including availability, portability, contamination risks, and short shelf-life, which limit the use of platelet transfusions outside of large trauma centers such as remote civilian hospitals and austere prehospital settings. This has prompted significant research in platelet substitutes that may resolve the above issues while providing platelet-mimetic hemostatic action. In this framework, we have developed a synthetic platelet surrogate, SynthoPlate, by integrative decoration of platelet function mimetic peptides on a biocompatible lipid nanovesicle platform. We have previously demonstrated hemostatic capability of SynthoPlate in correcting tail-bleeding time in thrombocytopenic mice. Building on this, we hypothesized that SynthoPlate transfusion would decrease bleeding in a murine model of acute hemorrhagic shock. METHODS: A validated model of uncontrolled intraperitoneal hemorrhage, via liver laceration was used to induce hemorrhagic shock in mice. SynthoPlate, control (unmodified) particles, and normal saline were administered as pretreatment and recue infusions to mice undergoing liver laceration and evaluated for hemostatic benefit by determining differences in blood loss and monitoring real-time hemodynamic data. RESULTS: Pretreatment SynthoPlate transfusion resulted in significant reduction of blood loss following hemorrhage, compared with control particles or normal saline treatment (0.86 ± 0.16 g control particles [CP] vs. 0.84 ± 0.13 g normal saline [NS] vs. 0.68 ± 0.09 g SynthoPlate, p < 0.005). SynthoPlate transfused mice demonstrated improved hemodynamics taking significantly longer to develop post-injury hypotension (168.3 ± 106.6 seconds CP vs. 137 ± 58 seconds NS vs. 546.7 ± 329.8 seconds SynthoPlate, p < 0.05). SynthoPlate infusion following liver laceration, that is, rescue transfusion, also resulted in a significant decrease in blood loss (0.89 ± 0.17 g CP vs. 0.92 ± 0.19 g NS vs. 0.69 ± 0.18 g SynthoPlate, p < 0.05). CONCLUSION: Transfusion of SynthoPlate particles reduces blood loss in a murine model of liver injury, and SynthoPlates may represent a viable transfusion product for the mitigation of blood loss in acute, severe hemorrhagic shock.


Subject(s)
Blood Platelets/cytology , Blood Substitutes/pharmacology , Hemostasis/physiology , Liver/injuries , Shock, Hemorrhagic/therapy , Animals , Disease Models, Animal , Infusions, Intravenous , Male , Mice , Mice, Inbred C57BL , Platelet Transfusion
9.
Sci Rep ; 8(1): 3118, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449604

ABSTRACT

Traumatic non-compressible hemorrhage is a leading cause of civilian and military mortality and its treatment requires massive transfusion of blood components, especially platelets. However, in austere civilian and battlefield locations, access to platelets is highly challenging due to limited supply and portability, high risk of bacterial contamination and short shelf-life. To resolve this, we have developed an I.V.-administrable 'synthetic platelet' nanoconstruct (SynthoPlate), that can mimic and amplify body's natural hemostatic mechanisms specifically at the bleeding site while maintaining systemic safety. Previously we have reported the detailed biochemical and hemostatic characterization of SynthoPlate in a non-trauma tail-bleeding model in mice. Building on this, here we sought to evaluate the hemostatic ability of SynthoPlate in emergency administration within the 'golden hour' following traumatic hemorrhagic injury in the femoral artery, in a pig model. We first characterized the storage stability and post-sterilization biofunctionality of SynthoPlate in vitro. The nanoconstructs were then I.V.-administered to pigs and their systemic safety and biodistribution were characterized. Subsequently we demonstrated that, following femoral artery injury, bolus administration of SynthoPlate could reduce blood loss, stabilize blood pressure and significantly improve survival. Our results indicate substantial promise of SynthoPlate as a viable platelet surrogate for emergency management of traumatic bleeding.


Subject(s)
Blood Platelets/cytology , Hemorrhage/therapy , Platelet Transfusion/methods , 3T3 Cells , Animals , Blood Transfusion , Femoral Artery/injuries , Hemorrhage/etiology , Hemorrhage/metabolism , Hemostasis/drug effects , Hemostatics/pharmacology , Humans , Mice , Polyethylene Glycols/pharmacology , Swine , Tissue Distribution
10.
Brain Inj ; 30(7): 864-71, 2016.
Article in English | MEDLINE | ID: mdl-27058006

ABSTRACT

OBJECTIVE: Although white matter hyperintensity (WMH) pathology has been observed in the context of traumatic brain injury (TBI), the contribution of this type of macrostructural damage to cognitive and/or post-concussive symptomatology (PCS) remains unclear. METHODS: Sixty-eight Veterans (mTBI = 46, Military Controls [MCs] = 22) with and without history of mild TBI (mTBI) underwent structural MRI and comprehensive cognitive and psychiatric assessment. WMH volume was identified as deep (DWMH) or periventricular (PVWMH) on fluid-attenuated inversion recovery (FLAIR) images. RESULTS: Group analyses revealed that mTBI history was not associated with increased WMH pathology (p's > 0.05). However, after controlling for post-traumatic stress disorder (PTSD) and intracranial volume, DWMH was associated with reduced short-and long-delayed memory performance within the mTBI group (p's < 0.05). Additionally, after adjusting for PTSD and time since injury, regression analyses revealed that WMH was not associated with self-reported ratings of PCS (p's > 0.05) in the mTBI group. CONCLUSIONS: The results demonstrate that, in relatively young Veterans with mTBI, DWMH differentially and negatively affects memory performance above and beyond the effects of PTSD symptoms. The findings may help to clarify prior mixed results as well as offer focused treatment implications for Veterans with history of neurotrauma and evidence of macrostructural white matter damage.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Memory/physiology , Stress Disorders, Post-Traumatic/diagnostic imaging , Veterans/psychology , White Matter/diagnostic imaging , Adult , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Cognition/physiology , Female , Humans , Injury Severity Score , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Organ Size , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/psychology , Young Adult
11.
J Head Trauma Rehabil ; 31(5): 297-308, 2016.
Article in English | MEDLINE | ID: mdl-26360008

ABSTRACT

OBJECTIVE: To investigate white matter microstructure compromise in Veterans with a history of traumatic brain injury (TBI) and its possible contribution to posttraumatic stress disorder (PTSD) symptomatology and neuropsychological functioning via diffusion tensor imaging. PARTICIPANTS AND METHODS: Thirty-eight Veterans with mild (n = 33) and moderate (n = 5) TBI and 17 military control participants without TBI completed neuropsychological testing and psychiatric screening and underwent magnetic resonance imaging an average of 4 years following their TBI event(s). Fractional anisotropy (FA) and diffusivity measures were extracted from 9 white matter tracts. RESULTS: Compared with military control participants, TBI participants reported higher levels of PTSD symptoms and performed worse on measures of memory and psychomotor-processing speed. Traumatic brain injury was associated with lower FA in the genu of the corpus callosum and left cingulum bundle. Fractional anisotropy negatively correlated with processing speed and/or executive functions in 7 of the 8 tracts. Regional FA did not correlate with memory or PTSD symptom ratings. CONCLUSION: Results suggest that current PTSD symptoms are independent of TBI-related white matter alterations, as measured by diffusion tensor imaging. In addition, white matter microstructural compromise may contribute to reduced processing speed in our sample of participants with history of neurotrauma. Findings of the current study add insight into the factors associated with complicated recovery from mild to moderate TBI.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Cognition , Cognitive Dysfunction/etiology , Stress Disorders, Post-Traumatic/etiology , White Matter/physiopathology , Adult , Anisotropy , Brain/physiopathology , Brain/ultrastructure , Brain Injuries, Traumatic/complications , Case-Control Studies , Cognitive Dysfunction/physiopathology , Diffusion Tensor Imaging , Female , Humans , Male , Military Personnel , Neuropsychological Tests , Veterans , White Matter/ultrastructure , Young Adult
12.
J Head Trauma Rehabil ; 29(1): 21-32, 2014.
Article in English | MEDLINE | ID: mdl-23640539

ABSTRACT

OBJECTIVE: We investigated using diffusion tensor imaging (DTI) and the association between white matter integrity and executive function (EF) performance in postacute mild traumatic brain injury (mTBI). In addition, we examined whether injury severity, as measured by loss of consciousness (LOC) versus alterations in consciousness (AOC), is related to white matter microstructural alterations and neuropsychological outcome. PARTICIPANTS: Thirty Iraq and Afghanistan War era veterans with a history of mTBI and 15 healthy veteran control participants. RESULTS: There were no significant overall group differences between control and mTBI participants on DTI measures. However, a subgroup of mTBI participants with EF decrements (n = 13) demonstrated significantly decreased fractional anisotropy of prefrontal white matter, corpus callosum, and cingulum bundle structures compared with mTBI participants without EF decrements (n = 17) and control participants. Participants having mTBI with LOC were more likely to evidence reduced EF performances and disrupted ventral prefrontal white matter integrity when compared with either mTBI participants without LOC or control participants. CONCLUSIONS: Findings suggest that altered white matter integrity contributes to reduced EF in subgroups of veterans with a history of mTBI and that LOC may be a risk factor for reduced EF as well as associated changes to ventral prefrontal white matter.


Subject(s)
Afghan Campaign 2001- , Brain Injuries/diagnosis , Brain Injuries/physiopathology , Executive Function/physiology , Iraq War, 2003-2011 , Leukoencephalopathies/diagnosis , Leukoencephalopathies/physiopathology , Neuropsychological Tests/statistics & numerical data , Unconsciousness/diagnosis , Unconsciousness/physiopathology , Veterans/psychology , Adult , Brain/physiopathology , Brain Injuries/psychology , Checklist , Diffusion Magnetic Resonance Imaging , Glasgow Coma Scale , Humans , Image Interpretation, Computer-Assisted , Leukoencephalopathies/psychology , Male , Psychometrics , Unconsciousness/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...