Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(30): 34208-34216, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32588615

ABSTRACT

Nowadays, the development of sustainable high-performance functional nanomaterials is in the spotlight. In this work, we report the preparation of a new generation of flexible and high electroconductive nanopapers based on nanofibrillated cellulose (NFC) and copper nanowires (CuNWs). Homogeneous red brick color nanopapers (thickness 30.2-36.4 µm) were obtained by mixing different amounts of NFC aqueous suspensions and CuNWs (1, 5, 10, 20, and 50 wt %), followed by vacuum filtration and drying. scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the incorporation of the different amounts of CuNWs, and their uniform and random distribution. All of the nanomaterials displayed good mechanical properties, viz., Young's modulus = 2.62-4.72 GPa, tensile strength = 30.2-70.6 MPa, and elongation at break = 2.3-4.1% for the nanopapers with 50 and 1 wt % of CuNWs mass fraction, respectively. The electrical conductivity of these materials strongly depends on the CuNW content, attaining a value of 5.43 × 104 S·m-1 for the nanopaper with a higher mass fraction. This is one of the highest values reported so far for nanocellulose-based conductive materials. Therefore, these nanopapers can be seen as an excellent inexpensive and green alternative to the current electroconductive materials for applications in electronic devices, energy storage, or sensors.

2.
Mol Ecol Resour ; 20(3)2020 May.
Article in English | MEDLINE | ID: mdl-31925943

ABSTRACT

The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.


Subject(s)
Animals, Wild/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Biodiversity , Biomarkers/metabolism , Cats , Genetics, Population/methods , Genomics/methods , Genotype , Genotyping Techniques/methods , Hybridization, Genetic/genetics
3.
Phys Chem Chem Phys ; 13(18): 8251-8, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21431123

ABSTRACT

The specific influence of X(-) ions (X = F,Cl, Br, I) in the solvation process of halide-benzene (X(-)-Bz) ionic heterodimers by Ar atoms is investigated by means of molecular dynamic (MD) simulations. The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering ensembles of n (n = 1-15 and n = 30) Ar atoms around the X(-)-Bz stable ionic dimers. The potential energy surfaces employed are based on an atom/ion-atom and atom/ion-bond decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions (RDF) and tridimensional (3D) probability densities.


Subject(s)
Argon/chemistry , Benzene/chemistry , Halogens/chemistry , Ions/chemistry , Bromides/chemistry , Chlorides/chemistry , Cluster Analysis , Dimerization , Fluorine/chemistry , Iodides/chemistry , Molecular Dynamics Simulation , Solvents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...