Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 14(2): 158-64, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11258964

ABSTRACT

N-Nitrosoindoles can efficiently transfer the nitroso group to nucleophilic targets in isolated purine nucleotides, causing depurination, deamination, and the formation of a novel guanine analogue, oxanine [Lucas, L. T., Gatehouse, D., and Shuker, D. E. G. (1999) J. Biol. Chem. 274, 18319-18326]. To determine the likely biological relevance of these modification pathways, the reactivity of 1-nitrosoindole-3-acetonitrile (NIAN), a model 3-substituted N-nitrosoindole, with oligonucleotides and calf thymus DNA was examined at physiological pH and temperature. Reaction of NIAN with single-stranded oligonucleotides containing various guanine motifs resulted in the production of single-strand break products at guanine sites due to the formation of alkali-labile lesions. The number of lesions increased with NIAN concentration and incubation time. Modification of calf thymus DNA by NIAN resulted in depurination, which gave the corresponding purine bases, deamination coupled with depurination, which gave xanthine, and the formation of oxanine. The former pathway was clearly the most important, and all reaction products exhibited a dose-response relationship. Cytosine and thymine residues were inactive toward NIAN. Further studies revealed an additional product in NIAN-treated duplex DNA containing a CCGG motif that was characterized as an interstrand cross-link, the yield of which increased with increasing NIAN concentration. These results indicate that the transnitrosating ability of NIAN to modify purine residues is preserved at the macromolecular level, with guanine residues appearing to be a primary site of reaction. All of these modification processes are potentially mutagenic events if they occur in vivo.


Subject(s)
Acetonitriles/toxicity , DNA Damage/drug effects , DNA/chemistry , Mutagens/toxicity , Oligonucleotides/chemistry , Purine Nucleotides/chemistry , Animals , Cattle , Chromatography, High Pressure Liquid , Cross-Linking Reagents , DNA/drug effects , Spectrophotometry, Ultraviolet
2.
J Biol Chem ; 274(26): 18319-26, 1999 Jun 25.
Article in English | MEDLINE | ID: mdl-10373435

ABSTRACT

The endogenous formation of N-nitrosoindoles is of concern since humans are exposed to a variety of naturally occurring and synthetic indolic compounds. As part of a study to evaluate the genotoxicity of N-nitrosoindoles, the reactions of three model compounds with purine nucleotides and 2'-deoxyguanosine at physiological pH were investigated. The profiles of reaction products were identical for each of the N-nitrosoindoles and three distinct pathways of reaction could be discerned. These pathways were: (i) depurination to the corresponding purine bases, (ii) deamination, coupled with depurination, to give hypoxanthine and xanthine, and (iii) formation of the novel nucleotide 2'-deoxyoxanosine monophosphate and its corresponding depurination product oxanine in reactions with 2'-deoxyguanosine monophosphate. 2'-Deoxyoxanosine and oxanine were observed in reactions with 2'-deoxyguanosine. Further studies showed that formation of all of these products could be rationalized by an initial transnitrosation step. These results suggest that, in contrast to many other genotoxic N-nitrosocompounds which are known to alkylate DNA, the genotoxicity of N-nitrosoindoles is likely to arise through transfer of the nitroso group to nucleophilic sites on the purine bases. All of the products resulting from transnitrosation by N-nitrosoindoles are potentially mutagenic. These findings reveal a new pathway for N-nitrosocompounds to exert genotoxicity.


Subject(s)
Deoxyguanosine/metabolism , Nitroso Compounds/toxicity , Nucleotides/metabolism , Acetonitriles/metabolism , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Indoles/metabolism , Mass Spectrometry , Models, Chemical , Nitroso Compounds/metabolism
4.
J Nematol ; 14(3): 358-63, 1982 Jul.
Article in English | MEDLINE | ID: mdl-19295721

ABSTRACT

Portions of a 'Tifgreen' bermudagrass golf green with poor turf and large numbers of Belonolabnus longicaudatus and Criconemella ornata were treated with selected nematicides in the summers of 1977 and 1978. Improvements in turf quality were observed within 4 wk after treatment with phenamiphos and fensulfothion. Treatment with phenamiphos restulted in lower numbers of B. longicaudatus 4 and 14 wk after treatment in the 1977 experiment and up to 1 yr after treatment in the 1978 experiment. Treatment with fensulfothion reduced the number of B. longicaudatus for only 1 month after treatment and significantly increased the numbers of this nematode in September and March in the 1978 experiment, Negative correlations were obtained between numbers of B. longicaudatus and turf qualily up to 1 yr. Numbers of C. ornata were reduced only in January and June following treatment with phenamiphos and not at any time with fensulfothion. Treatment with fensulfothion resulted in higher numbers of this nematode than in check plots in November and March. The percent area covered by prostrate spurge the following year was reduced following treatment with phenamiphos, but not with fensulfothion.

SELECTION OF CITATIONS
SEARCH DETAIL
...